/*-
 * Copyright (c) 2000 Doug Rabson
 * Copyright (c) 2014 Jeff Roberson
 * Copyright (c) 2016 Matthew Macy
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */
 
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
 
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#ifndef __HAIKU__
#include <sys/cpuset.h>
#include <sys/interrupt.h>
#endif
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/libkern.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#ifndef __HAIKU__
#include <sys/sched.h>
#endif
#include <sys/smp.h>
#include <sys/gtaskqueue.h>
#ifndef __HAIKU__
#include <sys/unistd.h>
#endif
#include <machine/stdarg.h>
 
static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
static void	gtaskqueue_thread_enqueue(void *);
static void	gtaskqueue_thread_loop(void *arg);
static int	task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
static void	gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
 
TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
TASKQGROUP_DEFINE(config, 1, 1);
 
struct gtaskqueue_busy {
	struct gtask	*tb_running;
	TAILQ_ENTRY(gtaskqueue_busy) tb_link;
};
 
static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1;
 
typedef void (*gtaskqueue_enqueue_fn)(void *context);
 
struct gtaskqueue {
	STAILQ_HEAD(, gtask)	tq_queue;
	gtaskqueue_enqueue_fn	tq_enqueue;
	void			*tq_context;
	char			*tq_name;
	TAILQ_HEAD(, gtaskqueue_busy) tq_active;
	struct mtx		tq_mutex;
#ifdef __HAIKU__
	sem_id 			tq_sem;
#endif
	struct thread		**tq_threads;
	int			tq_tcount;
	int			tq_spin;
	int			tq_flags;
	int			tq_callouts;
	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
};
 
#define	TQ_FLAGS_ACTIVE		(1 << 0)
#define	TQ_FLAGS_BLOCKED	(1 << 1)
#define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
 
#define	DT_CALLOUT_ARMED	(1 << 0)
 
#define	TQ_LOCK(tq)							\
	do {								\
		if ((tq)->tq_spin)					\
			mtx_lock_spin(&(tq)->tq_mutex);			\
		else							\
			mtx_lock(&(tq)->tq_mutex);			\
	} while (0)
#define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
 
#define	TQ_UNLOCK(tq)							\
	do {								\
		if ((tq)->tq_spin)					\
			mtx_unlock_spin(&(tq)->tq_mutex);		\
		else							\
			mtx_unlock(&(tq)->tq_mutex);			\
	} while (0)
#define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
 
#ifdef INVARIANTS
static void
gtask_dump(struct gtask *gtask)
{
	printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
	       gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
}
#endif
 
static __inline int
TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
    int t)
{
	if (tq->tq_spin)
		return (msleep_spin(p, m, wm, t));
	return (msleep(p, m, pri, wm, t));
}
 
static struct gtaskqueue *
_gtaskqueue_create(const char *name, int mflags,
		 taskqueue_enqueue_fn enqueue, void *context,
		 int mtxflags, const char *mtxname __unused)
{
	struct gtaskqueue *queue;
	char *tq_name;
 
	tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
	if (!tq_name)
		return (NULL);
 
	snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
 
	queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
	if (!queue) {
		free(tq_name, M_GTASKQUEUE);
		return (NULL);
	}
 
	STAILQ_INIT(&queue->tq_queue);
	TAILQ_INIT(&queue->tq_active);
	queue->tq_enqueue = enqueue;
	queue->tq_context = context;
	queue->tq_name = tq_name;
	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
	queue->tq_flags |= TQ_FLAGS_ACTIVE;
	if (enqueue == gtaskqueue_thread_enqueue)
		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
	mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
#ifdef __HAIKU__
	queue->tq_sem = create_sem(0, tq_name);
#endif
 
	return (queue);
}
 
 
/*
 * Signal a taskqueue thread to terminate.
 */
static void
gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
{
 
	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
		wakeup(tq);
		TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
	}
}
 
static void
gtaskqueue_free(struct gtaskqueue *queue)
{
 
	TQ_LOCK(queue);
	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
	gtaskqueue_terminate(queue->tq_threads, queue);
	KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
	mtx_destroy(&queue->tq_mutex);
#ifdef __HAIKU__
	delete_sem(queue->tq_sem);
#endif
	free(queue->tq_threads, M_GTASKQUEUE);
	free(queue->tq_name, M_GTASKQUEUE);
	free(queue, M_GTASKQUEUE);
}
 
/*
 * Wait for all to complete, then prevent it from being enqueued
 */
void
grouptask_block(struct grouptask *grouptask)
{
	struct gtaskqueue *queue = grouptask->gt_taskqueue;
	struct gtask *gtask = &grouptask->gt_task;
 
#ifdef INVARIANTS
	if (queue == NULL) {
		gtask_dump(gtask);
		panic("queue == NULL");
	}
#endif
	TQ_LOCK(queue);
	gtask->ta_flags |= TASK_NOENQUEUE;
  	gtaskqueue_drain_locked(queue, gtask);
	TQ_UNLOCK(queue);
}
 
void
grouptask_unblock(struct grouptask *grouptask)
{
	struct gtaskqueue *queue = grouptask->gt_taskqueue;
	struct gtask *gtask = &grouptask->gt_task;
 
#ifdef INVARIANTS
	if (queue == NULL) {
		gtask_dump(gtask);
		panic("queue == NULL");
	}
#endif
	TQ_LOCK(queue);
	gtask->ta_flags &= ~TASK_NOENQUEUE;
	TQ_UNLOCK(queue);
}
 
int
grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
{
#ifdef INVARIANTS
	if (queue == NULL) {
		gtask_dump(gtask);
		panic("queue == NULL");
	}
#endif
	TQ_LOCK(queue);
	if (gtask->ta_flags & TASK_ENQUEUED) {
		TQ_UNLOCK(queue);
		return (0);
	}
	if (gtask->ta_flags & TASK_NOENQUEUE) {
		TQ_UNLOCK(queue);
		return (EAGAIN);
	}
	STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
	gtask->ta_flags |= TASK_ENQUEUED;
	TQ_UNLOCK(queue);
	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
		queue->tq_enqueue(queue->tq_context);
	return (0);
}
 
static void
gtaskqueue_task_nop_fn(void *context)
{
}
 
/*
 * Block until all currently queued tasks in this taskqueue
 * have begun execution.  Tasks queued during execution of
 * this function are ignored.
 */
static void
gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
{
	struct gtask t_barrier;
 
	if (STAILQ_EMPTY(&queue->tq_queue))
		return;
 
	/*
	 * Enqueue our barrier after all current tasks, but with
	 * the highest priority so that newly queued tasks cannot
	 * pass it.  Because of the high priority, we can not use
	 * taskqueue_enqueue_locked directly (which drops the lock
	 * anyway) so just insert it at tail while we have the
	 * queue lock.
	 */
	GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
	STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
	t_barrier.ta_flags |= TASK_ENQUEUED;
 
	/*
	 * Once the barrier has executed, all previously queued tasks
	 * have completed or are currently executing.
	 */
	while (t_barrier.ta_flags & TASK_ENQUEUED)
		TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
}
 
/*
 * Block until all currently executing tasks for this taskqueue
 * complete.  Tasks that begin execution during the execution
 * of this function are ignored.
 */
static void
gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
{
	struct gtaskqueue_busy tb_marker, *tb_first;
 
	if (TAILQ_EMPTY(&queue->tq_active))
		return;
 
	/* Block taskq_terminate().*/
	queue->tq_callouts++;
 
	/*
	 * Wait for all currently executing taskqueue threads
	 * to go idle.
	 */
	tb_marker.tb_running = TB_DRAIN_WAITER;
	TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
	while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
		TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
	TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
 
	/*
	 * Wakeup any other drain waiter that happened to queue up
	 * without any intervening active thread.
	 */
	tb_first = TAILQ_FIRST(&queue->tq_active);
	if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
		wakeup(tb_first);
 
	/* Release taskqueue_terminate(). */
	queue->tq_callouts--;
	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
		wakeup_one(queue->tq_threads);
}
 
void
gtaskqueue_block(struct gtaskqueue *queue)
{
 
	TQ_LOCK(queue);
	queue->tq_flags |= TQ_FLAGS_BLOCKED;
	TQ_UNLOCK(queue);
}
 
void
gtaskqueue_unblock(struct gtaskqueue *queue)
{
 
	TQ_LOCK(queue);
	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
	if (!STAILQ_EMPTY(&queue->tq_queue))
		queue->tq_enqueue(queue->tq_context);
	TQ_UNLOCK(queue);
}
 
static void
gtaskqueue_run_locked(struct gtaskqueue *queue)
{
	struct gtaskqueue_busy tb;
	struct gtaskqueue_busy *tb_first;
	struct gtask *gtask;
 
	KASSERT(queue != NULL, ("tq is NULL"));
	TQ_ASSERT_LOCKED(queue);
	tb.tb_running = NULL;
 
	while (STAILQ_FIRST(&queue->tq_queue)) {
		TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
 
		/*
		 * Carefully remove the first task from the queue and
		 * clear its TASK_ENQUEUED flag
		 */
		gtask = STAILQ_FIRST(&queue->tq_queue);
		KASSERT(gtask != NULL, ("task is NULL"));
		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
		gtask->ta_flags &= ~TASK_ENQUEUED;
		tb.tb_running = gtask;
		TQ_UNLOCK(queue);
 
		KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
		gtask->ta_func(gtask->ta_context);
 
		TQ_LOCK(queue);
		tb.tb_running = NULL;
		wakeup(gtask);
 
		TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
		tb_first = TAILQ_FIRST(&queue->tq_active);
		if (tb_first != NULL &&
		    tb_first->tb_running == TB_DRAIN_WAITER)
			wakeup(tb_first);
	}
}
 
static int
task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
{
	struct gtaskqueue_busy *tb;
 
	TQ_ASSERT_LOCKED(queue);
	TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
		if (tb->tb_running == gtask)
			return (1);
	}
	return (0);
}
 
static int
gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
{
 
	if (gtask->ta_flags & TASK_ENQUEUED)
		STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
	gtask->ta_flags &= ~TASK_ENQUEUED;
	return (task_is_running(queue, gtask) ? EBUSY : 0);
}
 
int
gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
{
	int error;
 
	TQ_LOCK(queue);
	error = gtaskqueue_cancel_locked(queue, gtask);
	TQ_UNLOCK(queue);
 
	return (error);
}
 
static void
gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
{
	while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
		TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0);
}
 
void
gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
{
#ifndef __HAIKU__
	if (!queue->tq_spin)
		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
#endif
 
	TQ_LOCK(queue);
	gtaskqueue_drain_locked(queue, gtask);
	TQ_UNLOCK(queue);
}
 
void
gtaskqueue_drain_all(struct gtaskqueue *queue)
{
#ifndef __HAIKU__
	if (!queue->tq_spin)
		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
#endif
 
	TQ_LOCK(queue);
	gtaskqueue_drain_tq_queue(queue);
	gtaskqueue_drain_tq_active(queue);
	TQ_UNLOCK(queue);
}
 
static int
_gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
    void* mask, const char *name, va_list ap)
{
	char ktname[19 + 1];
	struct thread *td;
	struct gtaskqueue *tq;
	int i, error;
 
	if (count <= 0)
		return (EINVAL);
 
	vsnprintf(ktname, sizeof(ktname), name, ap);
	tq = *tqp;
 
	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
	    M_NOWAIT | M_ZERO);
	if (tq->tq_threads == NULL) {
		printf("%s: no memory for %s threads\n", __func__, ktname);
		return (ENOMEM);
	}
 
	for (i = 0; i < count; i++) {
		if (count == 1)
			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
			    &tq->tq_threads[i], 0, 0, "%s", ktname);
		else
			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
			    &tq->tq_threads[i], 0, 0,
			    "%s_%d", ktname, i);
		if (error) {
			/* should be ok to continue, taskqueue_free will dtrt */
			printf("%s: kthread_add(%s): error %d", __func__,
			    ktname, error);
			tq->tq_threads[i] = NULL;		/* paranoid */
		} else
			tq->tq_tcount++;
	}
	for (i = 0; i < count; i++) {
		if (tq->tq_threads[i] == NULL)
			continue;
		td = tq->tq_threads[i];
#ifndef __HAIKU__
		if (mask) {
			error = cpuset_setthread(td->td_tid, mask);
			/*
			 * Failing to pin is rarely an actual fatal error;
			 * it'll just affect performance.
			 */
			if (error)
				printf("%s: curthread=%llu: can't pin; "
				    "error=%d\n",
				    __func__,
				    (unsigned long long) td->td_tid,
				    error);
		}
#endif
		thread_lock(td);
		sched_prio(td, pri);
		sched_add(td, SRQ_BORING);
		thread_unlock(td);
	}
 
	return (0);
}
 
static int
gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
    const char *name, ...)
{
	va_list ap;
	int error;
 
	va_start(ap, name);
	error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
	va_end(ap);
	return (error);
}
 
static inline void
gtaskqueue_run_callback(struct gtaskqueue *tq,
    enum taskqueue_callback_type cb_type)
{
	taskqueue_callback_fn tq_callback;
 
	TQ_ASSERT_UNLOCKED(tq);
	tq_callback = tq->tq_callbacks[cb_type];
	if (tq_callback != NULL)
		tq_callback(tq->tq_cb_contexts[cb_type]);
}
 
static void
gtaskqueue_thread_loop(void *arg)
{
	struct gtaskqueue **tqp, *tq;
 
	tqp = arg;
	tq = *tqp;
	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
	TQ_LOCK(tq);
	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
		/* XXX ? */
		gtaskqueue_run_locked(tq);
		/*
		 * Because taskqueue_run() can drop tq_mutex, we need to
		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
		 * meantime, which means we missed a wakeup.
		 */
		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
			break;
#ifndef __HAIKU__
		TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
#else
		TQ_UNLOCK(tq);
		acquire_sem(tq->tq_sem);
		TQ_LOCK(tq);
#endif
	}
	gtaskqueue_run_locked(tq);
	/*
	 * This thread is on its way out, so just drop the lock temporarily
	 * in order to call the shutdown callback.  This allows the callback
	 * to look at the taskqueue, even just before it dies.
	 */
	TQ_UNLOCK(tq);
	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
	TQ_LOCK(tq);
 
	/* rendezvous with thread that asked us to terminate */
	tq->tq_tcount--;
	wakeup_one(tq->tq_threads);
	TQ_UNLOCK(tq);
	kthread_exit();
}
 
static void
gtaskqueue_thread_enqueue(void *context)
{
	struct gtaskqueue **tqp, *tq;
 
	tqp = context;
	tq = *tqp;
#ifndef __HAIKU__
	wakeup_one(tq);
#else
	release_sem_etc(tq->tq_sem, 1, B_DO_NOT_RESCHEDULE);
#endif
}
 
 
static struct gtaskqueue *
gtaskqueue_create_fast(const char *name, int mflags,
		 taskqueue_enqueue_fn enqueue, void *context)
{
	return _gtaskqueue_create(name, mflags, enqueue, context,
			MTX_SPIN, "fast_taskqueue");
}
 
 
struct taskqgroup_cpu {
	LIST_HEAD(, grouptask)	tgc_tasks;
	struct gtaskqueue	*tgc_taskq;
	int	tgc_cnt;
	int	tgc_cpu;
};
 
struct taskqgroup {
	struct taskqgroup_cpu tqg_queue[MAXCPU];
	struct mtx	tqg_lock;
	const char *	tqg_name;
	int		tqg_adjusting;
	int		tqg_stride;
	int		tqg_cnt;
};
 
struct taskq_bind_task {
	struct gtask bt_task;
	int	bt_cpuid;
};
 
static void
taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
{
	struct taskqgroup_cpu *qcpu;
 
	qcpu = &qgroup->tqg_queue[idx];
	LIST_INIT(&qcpu->tgc_tasks);
	qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
	    gtaskqueue_thread_enqueue, &qcpu->tgc_taskq);
	MPASS(qcpu->tgc_taskq);
	gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
	    "%s_%d", qgroup->tqg_name, idx);
	qcpu->tgc_cpu = cpu;
}
 
static void
taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
{
 
	gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
}
 
/*
 * Find the taskq with least # of tasks that doesn't currently have any
 * other queues from the uniq identifier.
 */
static int
taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
{
	struct grouptask *n;
	int i, idx, mincnt;
	int strict;
 
	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
#ifndef __HAIKU__
	if (qgroup->tqg_cnt == 0)
#else
	KASSERT(qgroup->tqg_cnt > 0, ("qgroup(%p)->tqg_cnt is %d!", qgroup, qgroup->tqg_cnt));
	if (qgroup->tqg_cnt == 1)
#endif
		return (0);
	idx = -1;
	mincnt = INT_MAX;
	/*
	 * Two passes;  First scan for a queue with the least tasks that
	 * does not already service this uniq id.  If that fails simply find
	 * the queue with the least total tasks;
	 */
	for (strict = 1; mincnt == INT_MAX; strict = 0) {
		for (i = 0; i < qgroup->tqg_cnt; i++) {
			if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
				continue;
			if (strict) {
				LIST_FOREACH(n,
				    &qgroup->tqg_queue[i].tgc_tasks, gt_list)
					if (n->gt_uniq == uniq)
						break;
				if (n != NULL)
					continue;
			}
			mincnt = qgroup->tqg_queue[i].tgc_cnt;
			idx = i;
		}
	}
	if (idx == -1)
		panic("%s: failed to pick a qid.", __func__);
 
	return (idx);
}
 
/*
 * smp_started is unusable since it is not set for UP kernels or even for
 * SMP kernels when there is 1 CPU.  This is usually handled by adding a
 * (mp_ncpus == 1) test, but that would be broken here since we need to
 * to synchronize with the SI_SUB_SMP ordering.  Even in the pure SMP case
 * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP.
 *
 * So maintain our own flag.  It must be set after all CPUs are started
 * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed
 * adjustment is properly delayed.  SI_ORDER_FOURTH is clearly before
 * SI_ORDER_ANY and unclearly after the CPUs are started.  It would be
 * simpler for adjustment to pass a flag indicating if it is delayed.
 */ 
 
static int tqg_smp_started;
 
static void
tqg_record_smp_started(void *arg)
{
	tqg_smp_started = 1;
}
 
SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH,
	tqg_record_smp_started, NULL);
 
void
taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
    void *uniq, device_t dev, struct resource *irq, const char *name)
{
	int cpu, qid, error;
 
	gtask->gt_uniq = uniq;
	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
	gtask->gt_dev = dev;
	gtask->gt_irq = irq;
	gtask->gt_cpu = -1;
	mtx_lock(&qgroup->tqg_lock);
	qid = taskqgroup_find(qgroup, uniq);
	qgroup->tqg_queue[qid].tgc_cnt++;
	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
	if (dev != NULL && irq != NULL && tqg_smp_started) {
		cpu = qgroup->tqg_queue[qid].tgc_cpu;
		gtask->gt_cpu = cpu;
		mtx_unlock(&qgroup->tqg_lock);
		error = bus_bind_intr(dev, irq, cpu);
		if (error)
			printf("%s: binding interrupt failed for %s: %d\n",
			    __func__, gtask->gt_name, error);
	} else
		mtx_unlock(&qgroup->tqg_lock);
}
 
static void
taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
{
	int qid, cpu, error;
 
	mtx_lock(&qgroup->tqg_lock);
	qid = taskqgroup_find(qgroup, gtask->gt_uniq);
	cpu = qgroup->tqg_queue[qid].tgc_cpu;
	if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) {
		mtx_unlock(&qgroup->tqg_lock);
		error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu);
		mtx_lock(&qgroup->tqg_lock);
		if (error)
			printf("%s: binding interrupt failed for %s: %d\n",
			    __func__, gtask->gt_name, error);
 
	}
	qgroup->tqg_queue[qid].tgc_cnt++;
	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
	MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
	mtx_unlock(&qgroup->tqg_lock);
}
 
int
taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
    void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
{
	int i, qid, error;
 
	qid = -1;
	gtask->gt_uniq = uniq;
	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
	gtask->gt_dev = dev;
	gtask->gt_irq = irq;
	gtask->gt_cpu = cpu;
	mtx_lock(&qgroup->tqg_lock);
	if (tqg_smp_started) {
		for (i = 0; i < qgroup->tqg_cnt; i++)
			if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
				qid = i;
				break;
			}
		if (qid == -1) {
			mtx_unlock(&qgroup->tqg_lock);
			printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
			return (EINVAL);
		}
	} else
		qid = 0;
	qgroup->tqg_queue[qid].tgc_cnt++;
	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
	cpu = qgroup->tqg_queue[qid].tgc_cpu;
	mtx_unlock(&qgroup->tqg_lock);
 
	if (dev != NULL && irq != NULL && tqg_smp_started) {
		error = bus_bind_intr(dev, irq, cpu);
		if (error)
			printf("%s: binding interrupt failed for %s: %d\n",
			    __func__, gtask->gt_name, error);
	}
	return (0);
}
 
static int
taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask)
{
	device_t dev;
	struct resource *irq;
	int cpu, error, i, qid;
 
	qid = -1;
	dev = gtask->gt_dev;
	irq = gtask->gt_irq;
	cpu = gtask->gt_cpu;
	MPASS(tqg_smp_started);
	mtx_lock(&qgroup->tqg_lock);
	for (i = 0; i < qgroup->tqg_cnt; i++)
		if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
			qid = i;
			break;
		}
	if (qid == -1) {
		mtx_unlock(&qgroup->tqg_lock);
		printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
		return (EINVAL);
	}
	qgroup->tqg_queue[qid].tgc_cnt++;
	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
	MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL);
	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
	mtx_unlock(&qgroup->tqg_lock);
 
	if (dev != NULL && irq != NULL) {
		error = bus_bind_intr(dev, irq, cpu);
		if (error)
			printf("%s: binding interrupt failed for %s: %d\n",
			    __func__, gtask->gt_name, error);
	}
	return (0);
}
 
void
taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
{
	int i;
 
	grouptask_block(gtask);
	mtx_lock(&qgroup->tqg_lock);
	for (i = 0; i < qgroup->tqg_cnt; i++)
		if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
			break;
	if (i == qgroup->tqg_cnt)
		panic("%s: task %s not in group", __func__, gtask->gt_name);
	qgroup->tqg_queue[i].tgc_cnt--;
	LIST_REMOVE(gtask, gt_list);
	mtx_unlock(&qgroup->tqg_lock);
	gtask->gt_taskqueue = NULL;
	gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
}
 
static void
taskqgroup_binder(void *ctx)
{
	struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx;
#ifndef __HAIKU__
	cpuset_t mask;
	int error;
 
	CPU_ZERO(&mask);
	CPU_SET(gtask->bt_cpuid, &mask);
	error = cpuset_setthread(curthread->td_tid, &mask);
	thread_lock(curthread);
	sched_bind(curthread, gtask->bt_cpuid);
	thread_unlock(curthread);
 
	if (error)
		printf("%s: binding curthread failed: %d\n", __func__, error);
#endif
	free(gtask, M_DEVBUF);
}
 
static void
taskqgroup_bind(struct taskqgroup *qgroup)
{
	struct taskq_bind_task *gtask;
	int i;
 
	/*
	 * Bind taskqueue threads to specific CPUs, if they have been assigned
	 * one.
	 */
	if (qgroup->tqg_cnt == 1)
		return;
 
	for (i = 0; i < qgroup->tqg_cnt; i++) {
		gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK);
		GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
		gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
		grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
		    &gtask->bt_task);
	}
}
 
static void
taskqgroup_config_init(void *arg)
{
	struct taskqgroup *qgroup = qgroup_config;
	LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
 
	LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
	    grouptask, gt_list);
	qgroup->tqg_queue[0].tgc_cnt = 0;
	taskqgroup_cpu_create(qgroup, 0, 0);
 
	qgroup->tqg_cnt = 1;
	qgroup->tqg_stride = 1;
}
 
SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND,
	taskqgroup_config_init, NULL);
 
static int
_taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
{
	LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
	struct grouptask *gtask;
	int i, k, old_cnt, old_cpu, cpu;
 
	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
 
	if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) {
		printf("%s: failed cnt: %d stride: %d "
		    "mp_ncpus: %d tqg_smp_started: %d\n",
		    __func__, cnt, stride, mp_ncpus, tqg_smp_started);
		return (EINVAL);
	}
	if (qgroup->tqg_adjusting) {
		printf("%s failed: adjusting\n", __func__);
		return (EBUSY);
	}
	qgroup->tqg_adjusting = 1;
	old_cnt = qgroup->tqg_cnt;
	old_cpu = 0;
	if (old_cnt < cnt)
		old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu;
	mtx_unlock(&qgroup->tqg_lock);
	/*
	 * Set up queue for tasks added before boot.
	 */
	if (old_cnt == 0) {
		LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
		    grouptask, gt_list);
		qgroup->tqg_queue[0].tgc_cnt = 0;
	}
 
	/*
	 * If new taskq threads have been added.
	 */
	cpu = old_cpu;
	for (i = old_cnt; i < cnt; i++) {
		taskqgroup_cpu_create(qgroup, i, cpu);
 
		for (k = 0; k < stride; k++)
			cpu = CPU_NEXT(cpu);
	}
	mtx_lock(&qgroup->tqg_lock);
	qgroup->tqg_cnt = cnt;
	qgroup->tqg_stride = stride;
 
	/*
	 * Adjust drivers to use new taskqs.
	 */
	for (i = 0; i < old_cnt; i++) {
		while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
			LIST_REMOVE(gtask, gt_list);
			qgroup->tqg_queue[i].tgc_cnt--;
			LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
		}
	}
	mtx_unlock(&qgroup->tqg_lock);
 
	while ((gtask = LIST_FIRST(&gtask_head))) {
		LIST_REMOVE(gtask, gt_list);
		if (gtask->gt_cpu == -1)
			taskqgroup_attach_deferred(qgroup, gtask);
		else if (taskqgroup_attach_cpu_deferred(qgroup, gtask))
			taskqgroup_attach_deferred(qgroup, gtask);
	}
 
#ifdef INVARIANTS
	mtx_lock(&qgroup->tqg_lock);
	for (i = 0; i < qgroup->tqg_cnt; i++) {
		MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL);
		LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list)
			MPASS(gtask->gt_taskqueue != NULL);
	}
	mtx_unlock(&qgroup->tqg_lock);
#endif
	/*
	 * If taskq thread count has been reduced.
	 */
	for (i = cnt; i < old_cnt; i++)
		taskqgroup_cpu_remove(qgroup, i);
 
	taskqgroup_bind(qgroup);
 
	mtx_lock(&qgroup->tqg_lock);
	qgroup->tqg_adjusting = 0;
 
	return (0);
}
 
int
taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
{
	int error;
 
	mtx_lock(&qgroup->tqg_lock);
	error = _taskqgroup_adjust(qgroup, cnt, stride);
	mtx_unlock(&qgroup->tqg_lock);
 
	return (error);
}
 
struct taskqgroup *
taskqgroup_create(const char *name)
{
	struct taskqgroup *qgroup;
 
	qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
	mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
	qgroup->tqg_name = name;
	LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
 
	return (qgroup);
}
 
void
taskqgroup_destroy(struct taskqgroup *qgroup)
{
 
}
 
void
taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
    const char *name)
{
 
	GROUPTASK_INIT(gtask, 0, fn, ctx);
	taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name);
}
 
void
taskqgroup_config_gtask_deinit(struct grouptask *gtask)
{
 
	taskqgroup_detach(qgroup_config, gtask);
}

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.

V523 The 'then' statement is equivalent to the 'else' statement.