/*
mkdos shell tool
Initialize FAT16 or FAT32 partitions, FAT12 floppy disks not supported
Copyright (c) 2015, François Revol <revol@free.fr>
Copyright (c) 2002 Marcus Overhagen <marcus@overhagen.de>, OpenBeOS project
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <ByteOrder.h>
#include <Drivers.h>
#include <driver_settings.h>
#include <KernelExport.h>
#include <OS.h>
#include <errno.h>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#define MKDOS
#include "mkdos.h"
#define WITH_FLOPPY_SUPPORT
void PrintUsage();
void CreateVolumeLabel(void *sector, const char *label);
status_t Initialize(int fatbits, const char *device, const char *label, bool noprompt, bool testmode);
status_t parse_initialize_parameters(const char* parameterString,
initialize_parameters& parameters);
status_t
check_volume_name(const char* name)
{
if (name == NULL || strlen(name) >= 11
|| strchr(name, '/') != NULL) {
return B_BAD_VALUE;
}
return B_OK;
}
status_t
parse_initialize_parameters(const char* parameterString,
initialize_parameters& parameters)
{
parameters.flags = 0;
parameters.verbose = false;
void *handle = parse_driver_settings_string(parameterString);
if (handle == NULL)
return B_ERROR;
// if (get_driver_boolean_parameter(handle, "noindex", false, true))
// parameters.flags |= VOLUME_NO_INDICES;
if (get_driver_boolean_parameter(handle, "verbose", false, true))
parameters.verbose = true;
const char *string = get_driver_parameter(handle, "fat",
NULL, NULL);
uint32 fatBits = 0;
if (string != NULL)
fatBits = strtoul(string, NULL, 0);
delete_driver_settings(handle);
if (fatBits != 0 && fatBits != 12 && fatBits != 16 && fatBits != 32) {
printf("mkdos error: fat must be 12, 16, or 32 bits\n");
return B_BAD_VALUE;
}
parameters.fatBits = fatBits;
return B_OK;
}
status_t
dosfs_initialize(int fd, partition_id partitionID, const char* name,
const char* parameterString, off_t partitionSize, disk_job_id job)
{
dprintf("dosfs_initialize(%d, , '%s', '%s', %lld)\n", fd, name, parameterString, partitionSize);
if (sizeof(bootsector1216) != 512 || sizeof(bootsector32) != 512 || sizeof(fsinfosector32) != 512) {
dprintf("dosfs: compilation error: struct alignment wrong\n");
return B_BAD_VALUE;
}
// check name
status_t status = check_volume_name(name);
if (status != B_OK)
return status;
// parse parameters
initialize_parameters parameters;
status = parse_initialize_parameters(parameterString, parameters);
if (status != B_OK)
return status;
update_disk_device_job_progress(job, 0);
int fatbits = parameters.fatBits;
const char *label = name;
// initialize the volume
// Volume volume(NULL);
// status = volume.Initialize(fd, name, parameters.blockSize,
// parameters.flags);
if (fatbits != 0 && fatbits != 12 && fatbits != 16 && fatbits != 32) {
dprintf("dosfs Error: don't know how to create a %d bit fat\n",fatbits);
return B_ERROR;
}
bool isRawDevice;
bool hasBiosGeometry;
bool hasDeviceGeometry;
bool hasPartitionInfo;
device_geometry biosGeometry;
device_geometry deviceGeometry;
partition_info partitionInfo;
isRawDevice = 0;//0 != strstr(device, "/raw");
hasBiosGeometry = B_OK == ioctl(fd, B_GET_BIOS_GEOMETRY, &biosGeometry, sizeof(biosGeometry));
hasDeviceGeometry = B_OK == ioctl(fd, B_GET_GEOMETRY, &deviceGeometry, sizeof(deviceGeometry));
hasPartitionInfo = B_OK == ioctl(fd, B_GET_PARTITION_INFO, &partitionInfo, sizeof(partitionInfo));
if (!isRawDevice && !hasBiosGeometry && !hasDeviceGeometry && !hasPartitionInfo)
isRawDevice = true;
if (hasBiosGeometry) {
dprintf("dosfs: bios geometry: %ld heads, %ld cylinders, %ld sectors/track, %ld bytes/sector\n",
biosGeometry.head_count,biosGeometry.cylinder_count,biosGeometry.sectors_per_track,biosGeometry.bytes_per_sector);
}
if (hasBiosGeometry) {
dprintf("dosfs: device geometry: %ld heads, %ld cylinders, %ld sectors/track, %ld bytes/sector\n",
deviceGeometry.head_count,deviceGeometry.cylinder_count,deviceGeometry.sectors_per_track,deviceGeometry.bytes_per_sector);
}
if (hasPartitionInfo) {
dprintf("dosfs: partition info: start at %Ld bytes (%Ld sectors), %Ld KB, %Ld MB, %Ld GB\n",
partitionInfo.offset,
partitionInfo.offset / 512,
partitionInfo.offset / 1024,
partitionInfo.offset / (1024 * 1024),
partitionInfo.offset / (1024 * 1024 * 1024));
dprintf("dosfs: partition info: size %Ld bytes, %Ld KB, %Ld MB, %Ld GB\n",
partitionInfo.size,
partitionInfo.size / 1024,
partitionInfo.size / (1024 * 1024),
partitionInfo.size / (1024 * 1024 * 1024));
}
if (!isRawDevice && !hasPartitionInfo) {
dprintf("dosfs Warning: couldn't get partition information\n");
}
if ((hasBiosGeometry && biosGeometry.bytes_per_sector != 512)
|| (hasDeviceGeometry && deviceGeometry.bytes_per_sector != 512)) {
dprintf("dosfs Error: geometry block size not 512 bytes\n");
return B_ERROR;
} else if (hasPartitionInfo && partitionInfo.logical_block_size != 512) {
dprintf("dosfs: partition logical block size is not 512, it's %ld bytes\n",
partitionInfo.logical_block_size);
}
if (hasDeviceGeometry && deviceGeometry.read_only) {
dprintf("dosfs Error: this is a read-only device\n");
return B_ERROR;
}
if (hasDeviceGeometry && deviceGeometry.write_once) {
dprintf("dosfs Error: this is a write-once device\n");
return B_ERROR;
}
uint64 size = 0;
if (hasPartitionInfo) {
size = partitionInfo.size;
} else if (hasDeviceGeometry) {
size = uint64(deviceGeometry.bytes_per_sector) * deviceGeometry.sectors_per_track * deviceGeometry.cylinder_count * deviceGeometry.head_count;
} else if (hasBiosGeometry) {
size = uint64(biosGeometry.bytes_per_sector) * biosGeometry.sectors_per_track * biosGeometry.cylinder_count * biosGeometry.head_count;
} else {
// maybe it's just a file
struct stat stat;
if (fstat(fd, &stat) < 0) {
dprintf( "dosfs Error: couldn't get device partition or geometry information, nor size\n");
return B_ERROR;
}
size = stat.st_size;
}
// TODO still valid on Haiku ?
/*if (isRawDevice && size > FLOPPY_MAX_SIZE) {
dprintf("Error: device too large for floppy, or raw devices not supported\n");
close(fd);
return B_ERROR;
}*/
dprintf("dosfs: size = %Ld bytes (%Ld sectors), %Ld KB, %Ld MB, %Ld GB\n",
size,
size / 512,
size / 1024,
size / (1024 * 1024),
size / (1024 * 1024 * 1024));
if (fatbits == 0) {
//auto determine fat type
if (isRawDevice && size <= FLOPPY_MAX_SIZE && (size / FAT12_CLUSTER_MAX_SIZE) < FAT12_MAX_CLUSTER_COUNT) {
fatbits = 12;
} else if ((size / CLUSTER_MAX_SIZE) < FAT16_MAX_CLUSTER_COUNT) {
fatbits = 16;
} else if ((size / CLUSTER_MAX_SIZE) < FAT32_MAX_CLUSTER_COUNT) {
fatbits = 32;
}
}
if (fatbits == 0) {
dprintf("dosfs Error: device too large for 32 bit fat\n");
return B_ERROR;
}
int sectorPerCluster;
sectorPerCluster = 0;
if (fatbits == 12) {
sectorPerCluster = 0;
if (size <= 4182016LL)
sectorPerCluster = 2; // XXX don't know the correct value
if (size <= 2091008LL)
sectorPerCluster = 1; // XXX don't know the correct value
} else if (fatbits == 16) {
// special BAD_CLUSTER value is 0xFFF7,
// but this should work anyway, since space required by
// two FATs will make maximum cluster count smaller.
// at least, this is what I think *should* happen
sectorPerCluster = 0; //larger than 2 GB must fail
if (size <= (2048 * 1024 * 1024LL)) // up to 2GB, use 32k clusters
sectorPerCluster = 64;
if (size <= (1024 * 1024 * 1024LL)) // up to 1GB, use 16k clusters
sectorPerCluster = 32;
if (size <= (512 * 1024 * 1024LL)) // up to 512MB, use 8k clusters
sectorPerCluster = 16;
if (size <= (256 * 1024 * 1024LL)) // up to 256MB, use 4k clusters
sectorPerCluster = 8;
if (size <= (128 * 1024 * 1024LL)) // up to 128MB, use 2k clusters
sectorPerCluster = 4;
if (size <= (16 * 1024 * 1024LL)) // up to 16MB, use 2k clusters
sectorPerCluster = 2;
if (size <= 4182016LL) // smaller than fat32 must fail
sectorPerCluster = 0;
} if (fatbits == 32) {
sectorPerCluster = 64; // default is 32k clusters
if (size <= (32 * 1024 * 1024 * 1024LL)) // up to 32GB, use 16k clusters
sectorPerCluster = 32;
if (size <= (16 * 1024 * 1024 * 1024LL)) // up to 16GB, use 8k clusters
sectorPerCluster = 16;
if (size <= (8 * 1024 * 1024 * 1024LL)) // up to 8GB, use 4k clusters
sectorPerCluster = 8;
if (size <= (532480 * 512LL)) // up to 260 MB, use 0.5k clusters
sectorPerCluster = 1;
if (size <= (66600 * 512LL)) // smaller than 32.5 MB must fail
sectorPerCluster = 0;
}
if (sectorPerCluster == 0) {
dprintf("dosfs Error: failed to determine sector per cluster value, partition too large for %d bit fat\n",fatbits);
return B_ERROR;
}
int reservedSectorCount = 0; // avoid compiler warning
int rootEntryCount = 0; // avoid compiler warning
int numFATs;
int sectorSize;
uint8 biosDriveId;
// get bios drive-id, or use 0x80
if (B_OK != ioctl(fd, B_GET_BIOS_DRIVE_ID, &biosDriveId, sizeof(biosDriveId))) {
biosDriveId = 0x80;
} else {
dprintf("dosfs: bios drive id: 0x%02x\n", (int)biosDriveId);
}
// default parameters for the bootsector
numFATs = 2;
sectorSize = 512;
if (fatbits == 12 || fatbits == 16)
reservedSectorCount = 1;
if (fatbits == 32)
reservedSectorCount = 32;
if (fatbits == 12)
rootEntryCount = 128; // XXX don't know the correct value
if (fatbits == 16)
rootEntryCount = 512;
if (fatbits == 32)
rootEntryCount = 0;
// Determine FATSize
// calculation done as MS recommends
uint64 dskSize = size / sectorSize;
uint32 rootDirSectors = ((rootEntryCount * 32) + (sectorSize - 1)) / sectorSize;
uint64 tmpVal1 = dskSize - (reservedSectorCount + rootDirSectors);
uint64 tmpVal2 = (256 * sectorPerCluster) + numFATs;
if (fatbits == 32)
tmpVal2 = tmpVal2 / 2;
uint32 FATSize = (tmpVal1 + (tmpVal2 - 1)) / tmpVal2;
// FATSize should now contain the size of *one* FAT, measured in sectors
// RootDirSectors should now contain the size of the fat12/16 root directory, measured in sectors
dprintf("dosfs: fatbits = %d, clustersize = %d\n", fatbits, sectorPerCluster * 512);
dprintf("dosfs: FAT size is %ld sectors\n", FATSize);
dprintf("dosfs: disk label: %s\n", label);
if (status < B_OK) {
dprintf("dosfs: Initializing volume failed: %s\n", strerror(status));
return status;
}
char bootsector[512];
memset(bootsector,0x00,512);
memcpy(bootsector + BOOTJMP_START_OFFSET, bootjmp, sizeof(bootjmp));
memcpy(bootsector + BOOTCODE_START_OFFSET, bootcode, sizeof(bootcode));
if (fatbits == 32) {
bootsector32 *bs = (bootsector32 *)bootsector;
uint16 temp16;
uint32 temp32;
memcpy(bs->BS_OEMName,"Haiku ",8);
bs->BPB_BytsPerSec = B_HOST_TO_LENDIAN_INT16(sectorSize);
bs->BPB_SecPerClus = sectorPerCluster;
bs->BPB_RsvdSecCnt = B_HOST_TO_LENDIAN_INT16(reservedSectorCount);
bs->BPB_NumFATs = numFATs;
bs->BPB_RootEntCnt = B_HOST_TO_LENDIAN_INT16(rootEntryCount);
bs->BPB_TotSec16 = B_HOST_TO_LENDIAN_INT16(0);
bs->BPB_Media = 0xF8;
bs->BPB_FATSz16 = B_HOST_TO_LENDIAN_INT16(0);
temp16 = hasBiosGeometry ? biosGeometry.sectors_per_track : 63;
bs->BPB_SecPerTrk = B_HOST_TO_LENDIAN_INT16(temp16);
temp16 = hasBiosGeometry ? biosGeometry.head_count : 255;
bs->BPB_NumHeads = B_HOST_TO_LENDIAN_INT16(temp16);
temp32 = hasPartitionInfo ? (partitionInfo.size / 512) : 0;
bs->BPB_HiddSec = B_HOST_TO_LENDIAN_INT32(temp32);
temp32 = size / 512;
bs->BPB_TotSec32 = B_HOST_TO_LENDIAN_INT32(temp32);
bs->BPB_FATSz32 = B_HOST_TO_LENDIAN_INT32(FATSize);
bs->BPB_ExtFlags = B_HOST_TO_LENDIAN_INT16(0);
bs->BPB_FSVer = B_HOST_TO_LENDIAN_INT16(0);
bs->BPB_RootClus = B_HOST_TO_LENDIAN_INT32(FAT32_ROOT_CLUSTER);
bs->BPB_FSInfo = B_HOST_TO_LENDIAN_INT16(FSINFO_SECTOR_NUM);
bs->BPB_BkBootSec = B_HOST_TO_LENDIAN_INT16(BACKUP_SECTOR_NUM);
memset(bs->BPB_Reserved,0,12);
bs->BS_DrvNum = biosDriveId;
bs->BS_Reserved1 = 0x00;
bs->BS_BootSig = 0x29;
*(uint32*)bs->BS_VolID = (uint32)system_time();
memcpy(bs->BS_VolLab,"NO NAME ",11);
memcpy(bs->BS_FilSysType,"FAT32 ",8);
bs->signature = B_HOST_TO_LENDIAN_INT16(0xAA55);
} else {
bootsector1216 *bs = (bootsector1216 *)bootsector;
uint16 temp16;
uint32 temp32;
uint32 sectorcount = size / 512;
memcpy(bs->BS_OEMName, "Haiku ", 8);
bs->BPB_BytsPerSec = B_HOST_TO_LENDIAN_INT16(sectorSize);
bs->BPB_SecPerClus = sectorPerCluster;
bs->BPB_RsvdSecCnt = B_HOST_TO_LENDIAN_INT16(reservedSectorCount);
bs->BPB_NumFATs = numFATs;
bs->BPB_RootEntCnt = B_HOST_TO_LENDIAN_INT16(rootEntryCount);
temp16 = (sectorcount <= 65535) ? sectorcount : 0;
bs->BPB_TotSec16 = B_HOST_TO_LENDIAN_INT16(temp16);
bs->BPB_Media = 0xF8;
bs->BPB_FATSz16 = B_HOST_TO_LENDIAN_INT16(FATSize);
temp16 = hasBiosGeometry ? biosGeometry.sectors_per_track : 63;
bs->BPB_SecPerTrk = B_HOST_TO_LENDIAN_INT16(temp16);
temp16 = hasBiosGeometry ? biosGeometry.head_count : 255;
bs->BPB_NumHeads = B_HOST_TO_LENDIAN_INT16(temp16);
temp32 = hasPartitionInfo ? (partitionInfo.size / 512) : 0;
bs->BPB_HiddSec = B_HOST_TO_LENDIAN_INT32(temp32);
temp32 = (sectorcount <= 65535) ? 0 : sectorcount;
bs->BPB_TotSec32 = B_HOST_TO_LENDIAN_INT32(temp32);
bs->BS_DrvNum = biosDriveId;
bs->BS_Reserved1 = 0x00;
bs->BS_BootSig = 0x29;
*(uint32*)bs->BS_VolID = (uint32)system_time();
memcpy(bs->BS_VolLab,"NO NAME ",11);
memcpy(bs->BS_FilSysType,(fatbits == 12) ? "FAT12 " : "FAT16 ",8);
bs->signature = B_HOST_TO_LENDIAN_INT16(0xAA55);
}
// Disk layout:
// 0) reserved sectors, this includes the bootsector, fsinfosector and bootsector backup
// 1) FAT
// 2) root directory (not on fat32)
// 3) file & directory data
ssize_t written;
// initialize everything with zero first
// avoid doing 512 byte writes here, they are slow
dprintf("dosfs: Writing FAT\n");
char * zerobuffer = (char *)malloc(65536);
memset(zerobuffer,0,65536);
int64 bytes_to_write = 512LL * (reservedSectorCount + (numFATs * FATSize) + rootDirSectors);
int64 pos = 0;
while (bytes_to_write > 0) {
ssize_t writesize = min_c(bytes_to_write, 65536);
written = write_pos(fd, pos, zerobuffer, writesize);
if (written != writesize) {
dprintf("dosfs Error: write error near sector %Ld\n",pos / 512);
free(zerobuffer);
return B_ERROR;
}
bytes_to_write -= writesize;
pos += writesize;
}
free(zerobuffer);
//write boot sector
dprintf("dosfs: Writing boot block\n");
written = write_pos(fd, BOOT_SECTOR_NUM * 512, bootsector, 512);
if (written != 512) {
dprintf("dosfs Error: write error at sector %d\n", BOOT_SECTOR_NUM);
return B_ERROR;
}
if (fatbits == 32) {
written = write_pos(fd, BACKUP_SECTOR_NUM * 512, bootsector, 512);
if (written != 512) {
dprintf("dosfs Error: write error at sector %d\n", BACKUP_SECTOR_NUM);
return B_ERROR;
}
}
//write first fat sector
dprintf("dosfs: Writing first FAT sector\n");
uint8 sec[512];
memset(sec,0,512);
if (fatbits == 12) {
//FAT[0] contains media byte in lower 8 bits, all other bits set to 1
//FAT[1] contains EOF marker
sec[0] = 0xF8;
sec[1] = 0xFF;
sec[2] = 0xFF;
} else if (fatbits == 16) {
//FAT[0] contains media byte in lower 8 bits, all other bits set to 1
sec[0] = 0xF8;
sec[1] = 0xFF;
//FAT[1] contains EOF marker
sec[2] = 0xFF;
sec[3] = 0xFF;
} else if (fatbits == 32) {
//FAT[0] contains media byte in lower 8 bits, all other bits set to 1
sec[0] = 0xF8;
sec[1] = 0xFF;
sec[2] = 0xFF;
sec[3] = 0xFF;
//FAT[1] contains EOF marker
sec[4] = 0xFF;
sec[5] = 0xFF;
sec[6] = 0xFF;
sec[7] = 0x0F;
//FAT[2] contains EOF marker, used to terminate root directory
sec[8] = 0xFF;
sec[9] = 0xFF;
sec[10] = 0xFF;
sec[11] = 0x0F;
}
written = write_pos(fd, reservedSectorCount * 512, sec, 512);
if (written != 512) {
dprintf("dosfs Error: write error at sector %d\n", reservedSectorCount);
return B_ERROR;
}
if (numFATs > 1) {
written = write_pos(fd, (reservedSectorCount + FATSize) * 512,sec,512);
if (written != 512) {
dprintf("dosfs Error: write error at sector %ld\n", reservedSectorCount + FATSize);
return B_ERROR;
}
}
//write fsinfo sector
if (fatbits == 32) {
dprintf("dosfs: Writing boot info\n");
//calculate total sector count first
uint64 free_count = size / 512;
//now account for already by metadata used sectors
free_count -= reservedSectorCount + (numFATs * FATSize) + rootDirSectors;
//convert from sector to clustercount
free_count /= sectorPerCluster;
//and account for 1 already used cluster of root directory
free_count -= 1;
fsinfosector32 fsinfosector;
memset(&fsinfosector,0x00,512);
fsinfosector.FSI_LeadSig = B_HOST_TO_LENDIAN_INT32(0x41615252);
fsinfosector.FSI_StrucSig = B_HOST_TO_LENDIAN_INT32(0x61417272);
fsinfosector.FSI_Free_Count = B_HOST_TO_LENDIAN_INT32((uint32)free_count);
fsinfosector.FSI_Nxt_Free = B_HOST_TO_LENDIAN_INT32(3);
fsinfosector.FSI_TrailSig = B_HOST_TO_LENDIAN_INT32(0xAA550000);
written = write_pos(fd, FSINFO_SECTOR_NUM * 512, &fsinfosector, 512);
if (written != 512) {
dprintf("dosfs Error: write error at sector %d\n", FSINFO_SECTOR_NUM);
return B_ERROR;
}
}
//write volume label into root directory
dprintf("dosfs: Writing root directory\n");
if (fatbits == 12 || fatbits == 16) {
uint8 data[512];
memset(data, 0, 512);
CreateVolumeLabel(data, label);
uint32 rootDirSector = reservedSectorCount + (numFATs * FATSize);
written = write_pos(fd, rootDirSector * 512, data, 512);
if (written != 512) {
dprintf("dosfs Error: write error at sector %ld\n", rootDirSector);
return B_ERROR;
}
} else if (fatbits == 32) {
int size = 512 * sectorPerCluster;
uint8 *cluster = (uint8*)malloc(size);
memset(cluster, 0, size);
CreateVolumeLabel(cluster, label);
uint32 rootDirSector = reservedSectorCount + (numFATs * FATSize) + rootDirSectors;
written = write_pos(fd, rootDirSector * 512, cluster, size);
free(cluster);
if (written != size) {
dprintf("dosfs Error: write error at sector %ld\n", rootDirSector);
return B_ERROR;
}
}
ioctl(fd, B_FLUSH_DRIVE_CACHE);
// rescan partition
status = scan_partition(partitionID);
if (status != B_OK)
return status;
update_disk_device_job_progress(job, 1);
// print some info, if desired
if (parameters.verbose) {
// disk_super_block super = volume.SuperBlock();
dprintf("dosfs: Disk was initialized successfully.\n");
/*
dprintf("\tname: \"%s\"\n", super.name);
dprintf("\tnum blocks: %" B_PRIdOFF "\n", super.NumBlocks());
dprintf("\tused blocks: %" B_PRIdOFF "\n", super.UsedBlocks());
dprintf("\tblock size: %u bytes\n", (unsigned)super.BlockSize());
dprintf("\tnum allocation groups: %d\n",
(int)super.AllocationGroups());
dprintf("\tallocation group size: %ld blocks\n",
1L << super.AllocationGroupShift());
dprintf("\tlog size: %u blocks\n", super.log_blocks.Length());
*/
}
return B_OK;
}
status_t
dosfs_uninitialize(int fd, partition_id partitionID, off_t partitionSize,
uint32 blockSize, disk_job_id job)
{
if (blockSize == 0)
return B_BAD_VALUE;
update_disk_device_job_progress(job, 0.0);
// just overwrite the superblock
// XXX: we might want to keep the loader part ?
char bootsector[512];
memset(bootsector,0x00,512);
if (write_pos(fd, 512, bootsector, sizeof(512)) < 0)
return errno;
update_disk_device_job_progress(job, 1.0);
return B_OK;
}
// #pragma mark -
#if 0
int
main(int argc, char *argv[])
{
if (sizeof(bootsector1216) != 512 || sizeof(bootsector32) != 512 || sizeof(fsinfosector32) != 512) {
dprintf("compilation error: struct alignment wrong\n");
return 1;
}
const char *device = NULL;
const char *label = NULL;
bool noprompt = false;
bool test = false;
int fat = 0;
while (1) {
int c;
int option_index = 0;
static struct option long_options[] =
{
{"noprompt", no_argument, 0, 'n'},
{"test", no_argument, 0, 't'},
{"fat", required_argument, 0, 'f'},
{0, 0, 0, 0}
};
c = getopt_long (argc, argv, "ntf:", long_options, &option_index);
if (c == -1)
break;
switch (c) {
case 'n':
noprompt = true;
break;
case 't':
test = true;
break;
case 'f':
fat = strtol(optarg, NULL, 10);
if (fat == 0)
fat = -1;
break;
default:
printf("\n");
PrintUsage();
return 1;
}
}
if (optind < argc)
device = argv[optind];
if ((optind + 1) < argc)
label = argv[optind + 1];
if (fat != 0 && fat != 12 && fat != 16 && fat != 32) {
printf("mkdos error: fat must be 12, 16, or 32 bits\n");
PrintUsage();
return 1;
}
if (device == NULL) {
printf("mkdos error: you must specify a device or partition or image\n");
printf(" such as /dev/disk/ide/ata/1/master/0/0_0\n");
PrintUsage();
return 1;
}
if (label == NULL) {
label = "no name";
}
if (noprompt)
printf("will not prompt for confirmation\n");
if (test)
printf("test mode enabled (no writes will occur)\n");
status_t s;
s = Initialize(fat, device, label, noprompt, test);
if (s != 0) {
printf("Initializing failed!\n");
}
return (s == B_OK) ? 0 : 1;
}
#endif
void CreateVolumeLabel(void *sector, const char *label)
{
// create a volume name directory entry in the 512 byte sector
// XXX convert from UTF8, and check for valid characters
// XXX this could be changed to use long file name entrys,
// XXX but the dosfs would have to be updated, too
dirent *d = (dirent *)sector;
memset(d, 0, sizeof(*d));
memset(d->Name, 0x20, 11);
memcpy(d->Name, label, min_c(11, strlen(label)));
d->Attr = 0x08;
}
↑ V576 Incorrect format. Consider checking the fifth actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Incorrect format. Consider checking the fourth actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Incorrect format. Consider checking the second actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Incorrect format. Consider checking the second actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Incorrect format. Consider checking the fifth actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Incorrect format. Consider checking the second actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Incorrect format. Consider checking the third actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Incorrect format. Consider checking the second actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Incorrect format. Consider checking the third actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Potentially incorrect format string is passed to the 'dprintf' function. Prefix 'L' is not applicable to conversion specifier 'd'.
↑ V576 Incorrect format. Consider checking the fourth actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V646 Consider inspecting the application's logic. It's possible that 'else' keyword is missing.
↑ V576 Potentially incorrect format string is passed to the 'dprintf' function. Prefix 'L' is not applicable to conversion specifier 'd'.
↑ V576 Incorrect format. Consider checking the second actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Potentially incorrect format string is passed to the 'dprintf' function. Prefix 'L' is not applicable to conversion specifier 'd'.
↑ V547 Expression 'numFATs > 1' is always true.
↑ V547 Expression 'status < ((int) 0)' is always false.
↑ V576 Incorrect format. Consider checking the second actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Incorrect format. Consider checking the second actual argument of the 'dprintf' function. The memsize type argument is expected.
↑ V576 Potentially incorrect format string is passed to the 'dprintf' function. Prefix 'L' is not applicable to conversion specifier 'd'.