/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD: releng/12.0/sys/dev/ath/if_ath_tx.c 327479 2018-01-02 00:07:28Z adrian $");
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#include "opt_inet.h"
#include "opt_ath.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/priv.h>
#include <sys/ktr.h>
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net80211/ieee80211_ht.h>
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <dev/ath/if_athvar.h>
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
#include <dev/ath/ath_hal/ah_diagcodes.h>
#include <dev/ath/if_ath_debug.h>
#ifdef ATH_TX99_DIAG
#include <dev/ath/ath_tx99/ath_tx99.h>
#endif
#include <dev/ath/if_ath_misc.h>
#include <dev/ath/if_ath_tx.h>
#include <dev/ath/if_ath_tx_ht.h>
#ifdef ATH_DEBUG_ALQ
#include <dev/ath/if_ath_alq.h>
#endif
/*
* How many retries to perform in software
*/
#define SWMAX_RETRIES 10
/*
* What queue to throw the non-QoS TID traffic into
*/
#define ATH_NONQOS_TID_AC WME_AC_VO
#if 0
static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an);
#endif
static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
int tid);
static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
int tid);
static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
struct ieee80211_node *ni, struct mbuf *m0, int *tid);
static struct ath_buf *
ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, struct ath_buf *bf);
#ifdef ATH_DEBUG_ALQ
void
ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first)
{
struct ath_buf *bf;
int i, n;
const char *ds;
/* XXX we should skip out early if debugging isn't enabled! */
bf = bf_first;
while (bf != NULL) {
/* XXX should ensure bf_nseg > 0! */
if (bf->bf_nseg == 0)
break;
n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1;
for (i = 0, ds = (const char *) bf->bf_desc;
i < n;
i++, ds += sc->sc_tx_desclen) {
if_ath_alq_post(&sc->sc_alq,
ATH_ALQ_EDMA_TXDESC,
sc->sc_tx_desclen,
ds);
}
bf = bf->bf_next;
}
}
#endif /* ATH_DEBUG_ALQ */
/*
* Whether to use the 11n rate scenario functions or not
*/
static inline int
ath_tx_is_11n(struct ath_softc *sc)
{
return ((sc->sc_ah->ah_magic == 0x20065416) ||
(sc->sc_ah->ah_magic == 0x19741014));
}
/*
* Obtain the current TID from the given frame.
*
* Non-QoS frames get mapped to a TID so frames consistently
* go on a sensible queue.
*/
static int
ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
{
const struct ieee80211_frame *wh;
wh = mtod(m0, const struct ieee80211_frame *);
/* Non-QoS: map frame to a TID queue for software queueing */
if (! IEEE80211_QOS_HAS_SEQ(wh))
return (WME_AC_TO_TID(M_WME_GETAC(m0)));
/* QoS - fetch the TID from the header, ignore mbuf WME */
return (ieee80211_gettid(wh));
}
static void
ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_frame *wh;
wh = mtod(bf->bf_m, struct ieee80211_frame *);
/* Only update/resync if needed */
if (bf->bf_state.bfs_isretried == 0) {
wh->i_fc[1] |= IEEE80211_FC1_RETRY;
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
BUS_DMASYNC_PREWRITE);
}
bf->bf_state.bfs_isretried = 1;
bf->bf_state.bfs_retries ++;
}
/*
* Determine what the correct AC queue for the given frame
* should be.
*
* For QoS frames, obey the TID. That way things like
* management frames that are related to a given TID
* are thus serialised with the rest of the TID traffic,
* regardless of net80211 overriding priority.
*
* For non-QoS frames, return the mbuf WMI priority.
*
* This has implications that higher priority non-QoS traffic
* may end up being scheduled before other non-QoS traffic,
* leading to out-of-sequence packets being emitted.
*
* (It'd be nice to log/count this so we can see if it
* really is a problem.)
*
* TODO: maybe we should throw multicast traffic, QoS or
* otherwise, into a separate TX queue?
*/
static int
ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
{
const struct ieee80211_frame *wh;
wh = mtod(m0, const struct ieee80211_frame *);
/*
* QoS data frame (sequence number or otherwise) -
* return hardware queue mapping for the underlying
* TID.
*/
if (IEEE80211_QOS_HAS_SEQ(wh))
return TID_TO_WME_AC(ieee80211_gettid(wh));
/*
* Otherwise - return mbuf QoS pri.
*/
return (M_WME_GETAC(m0));
}
void
ath_txfrag_cleanup(struct ath_softc *sc,
ath_bufhead *frags, struct ieee80211_node *ni)
{
struct ath_buf *bf, *next;
ATH_TXBUF_LOCK_ASSERT(sc);
TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
/* NB: bf assumed clean */
TAILQ_REMOVE(frags, bf, bf_list);
ath_returnbuf_head(sc, bf);
ieee80211_node_decref(ni);
}
}
/*
* Setup xmit of a fragmented frame. Allocate a buffer
* for each frag and bump the node reference count to
* reflect the held reference to be setup by ath_tx_start.
*/
int
ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
struct mbuf *m0, struct ieee80211_node *ni)
{
struct mbuf *m;
struct ath_buf *bf;
ATH_TXBUF_LOCK(sc);
for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
/* XXX non-management? */
bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
if (bf == NULL) { /* out of buffers, cleanup */
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: no buffer?\n",
__func__);
ath_txfrag_cleanup(sc, frags, ni);
break;
}
ieee80211_node_incref(ni);
TAILQ_INSERT_TAIL(frags, bf, bf_list);
}
ATH_TXBUF_UNLOCK(sc);
return !TAILQ_EMPTY(frags);
}
static int
ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
{
struct mbuf *m;
int error;
/*
* Load the DMA map so any coalescing is done. This
* also calculates the number of descriptors we need.
*/
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
bf->bf_segs, &bf->bf_nseg,
BUS_DMA_NOWAIT);
if (error == EFBIG) {
/* XXX packet requires too many descriptors */
bf->bf_nseg = ATH_MAX_SCATTER + 1;
} else if (error != 0) {
sc->sc_stats.ast_tx_busdma++;
ieee80211_free_mbuf(m0);
return error;
}
/*
* Discard null packets and check for packets that
* require too many TX descriptors. We try to convert
* the latter to a cluster.
*/
if (bf->bf_nseg > ATH_MAX_SCATTER) { /* too many desc's, linearize */
sc->sc_stats.ast_tx_linear++;
m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER);
if (m == NULL) {
ieee80211_free_mbuf(m0);
sc->sc_stats.ast_tx_nombuf++;
return ENOMEM;
}
m0 = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
bf->bf_segs, &bf->bf_nseg,
BUS_DMA_NOWAIT);
if (error != 0) {
sc->sc_stats.ast_tx_busdma++;
ieee80211_free_mbuf(m0);
return error;
}
KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER,
("too many segments after defrag; nseg %u", bf->bf_nseg));
} else if (bf->bf_nseg == 0) { /* null packet, discard */
sc->sc_stats.ast_tx_nodata++;
ieee80211_free_mbuf(m0);
return EIO;
}
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
__func__, m0, m0->m_pkthdr.len);
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
bf->bf_m = m0;
return 0;
}
/*
* Chain together segments+descriptors for a frame - 11n or otherwise.
*
* For aggregates, this is called on each frame in the aggregate.
*/
static void
ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0,
struct ath_buf *bf, int is_aggr, int is_first_subframe,
int is_last_subframe)
{
struct ath_hal *ah = sc->sc_ah;
char *ds;
int i, bp, dsp;
HAL_DMA_ADDR bufAddrList[4];
uint32_t segLenList[4];
int numTxMaps = 1;
int isFirstDesc = 1;
/*
* XXX There's txdma and txdma_mgmt; the descriptor
* sizes must match.
*/
struct ath_descdma *dd = &sc->sc_txdma;
/*
* Fillin the remainder of the descriptor info.
*/
/*
* We need the number of TX data pointers in each descriptor.
* EDMA and later chips support 4 TX buffers per descriptor;
* previous chips just support one.
*/
numTxMaps = sc->sc_tx_nmaps;
/*
* For EDMA and later chips ensure the TX map is fully populated
* before advancing to the next descriptor.
*/
ds = (char *) bf->bf_desc;
bp = dsp = 0;
bzero(bufAddrList, sizeof(bufAddrList));
bzero(segLenList, sizeof(segLenList));
for (i = 0; i < bf->bf_nseg; i++) {
bufAddrList[bp] = bf->bf_segs[i].ds_addr;
segLenList[bp] = bf->bf_segs[i].ds_len;
bp++;
/*
* Go to the next segment if this isn't the last segment
* and there's space in the current TX map.
*/
if ((i != bf->bf_nseg - 1) && (bp < numTxMaps))
continue;
/*
* Last segment or we're out of buffer pointers.
*/
bp = 0;
if (i == bf->bf_nseg - 1)
ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0);
else
ath_hal_settxdesclink(ah, (struct ath_desc *) ds,
bf->bf_daddr + dd->dd_descsize * (dsp + 1));
/*
* XXX This assumes that bfs_txq is the actual destination
* hardware queue at this point. It may not have been
* assigned, it may actually be pointing to the multicast
* software TXQ id. These must be fixed!
*/
ath_hal_filltxdesc(ah, (struct ath_desc *) ds
, bufAddrList
, segLenList
, bf->bf_descid /* XXX desc id */
, bf->bf_state.bfs_tx_queue
, isFirstDesc /* first segment */
, i == bf->bf_nseg - 1 /* last segment */
, (struct ath_desc *) ds0 /* first descriptor */
);
/*
* Make sure the 11n aggregate fields are cleared.
*
* XXX TODO: this doesn't need to be called for
* aggregate frames; as it'll be called on all
* sub-frames. Since the descriptors are in
* non-cacheable memory, this leads to some
* rather slow writes on MIPS/ARM platforms.
*/
if (ath_tx_is_11n(sc))
ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds);
/*
* If 11n is enabled, set it up as if it's an aggregate
* frame.
*/
if (is_last_subframe) {
ath_hal_set11n_aggr_last(sc->sc_ah,
(struct ath_desc *) ds);
} else if (is_aggr) {
/*
* This clears the aggrlen field; so
* the caller needs to call set_aggr_first()!
*
* XXX TODO: don't call this for the first
* descriptor in the first frame in an
* aggregate!
*/
ath_hal_set11n_aggr_middle(sc->sc_ah,
(struct ath_desc *) ds,
bf->bf_state.bfs_ndelim);
}
isFirstDesc = 0;
bf->bf_lastds = (struct ath_desc *) ds;
/*
* Don't forget to skip to the next descriptor.
*/
ds += sc->sc_tx_desclen;
dsp++;
/*
* .. and don't forget to blank these out!
*/
bzero(bufAddrList, sizeof(bufAddrList));
bzero(segLenList, sizeof(segLenList));
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
}
/*
* Set the rate control fields in the given descriptor based on
* the bf_state fields and node state.
*
* The bfs fields should already be set with the relevant rate
* control information, including whether MRR is to be enabled.
*
* Since the FreeBSD HAL currently sets up the first TX rate
* in ath_hal_setuptxdesc(), this will setup the MRR
* conditionally for the pre-11n chips, and call ath_buf_set_rate
* unconditionally for 11n chips. These require the 11n rate
* scenario to be set if MCS rates are enabled, so it's easier
* to just always call it. The caller can then only set rates 2, 3
* and 4 if multi-rate retry is needed.
*/
static void
ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf)
{
struct ath_rc_series *rc = bf->bf_state.bfs_rc;
/* If mrr is disabled, blank tries 1, 2, 3 */
if (! bf->bf_state.bfs_ismrr)
rc[1].tries = rc[2].tries = rc[3].tries = 0;
#if 0
/*
* If NOACK is set, just set ntries=1.
*/
else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) {
rc[1].tries = rc[2].tries = rc[3].tries = 0;
rc[0].tries = 1;
}
#endif
/*
* Always call - that way a retried descriptor will
* have the MRR fields overwritten.
*
* XXX TODO: see if this is really needed - setting up
* the first descriptor should set the MRR fields to 0
* for us anyway.
*/
if (ath_tx_is_11n(sc)) {
ath_buf_set_rate(sc, ni, bf);
} else {
ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
, rc[1].ratecode, rc[1].tries
, rc[2].ratecode, rc[2].tries
, rc[3].ratecode, rc[3].tries
);
}
}
/*
* Setup segments+descriptors for an 11n aggregate.
* bf_first is the first buffer in the aggregate.
* The descriptor list must already been linked together using
* bf->bf_next.
*/
static void
ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
{
struct ath_buf *bf, *bf_prev = NULL;
struct ath_desc *ds0 = bf_first->bf_desc;
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
__func__, bf_first->bf_state.bfs_nframes,
bf_first->bf_state.bfs_al);
bf = bf_first;
if (bf->bf_state.bfs_txrate0 == 0)
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, txrate0=%d\n",
__func__, bf, 0);
if (bf->bf_state.bfs_rc[0].ratecode == 0)
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, rix0=%d\n",
__func__, bf, 0);
/*
* Setup all descriptors of all subframes - this will
* call ath_hal_set11naggrmiddle() on every frame.
*/
while (bf != NULL) {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
__func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
SEQNO(bf->bf_state.bfs_seqno));
/*
* Setup the initial fields for the first descriptor - all
* the non-11n specific stuff.
*/
ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc
, bf->bf_state.bfs_pktlen /* packet length */
, bf->bf_state.bfs_hdrlen /* header length */
, bf->bf_state.bfs_atype /* Atheros packet type */
, bf->bf_state.bfs_txpower /* txpower */
, bf->bf_state.bfs_txrate0
, bf->bf_state.bfs_try0 /* series 0 rate/tries */
, bf->bf_state.bfs_keyix /* key cache index */
, bf->bf_state.bfs_txantenna /* antenna mode */
, bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ /* flags */
, bf->bf_state.bfs_ctsrate /* rts/cts rate */
, bf->bf_state.bfs_ctsduration /* rts/cts duration */
);
/*
* First descriptor? Setup the rate control and initial
* aggregate header information.
*/
if (bf == bf_first) {
/*
* setup first desc with rate and aggr info
*/
ath_tx_set_ratectrl(sc, bf->bf_node, bf);
}
/*
* Setup the descriptors for a multi-descriptor frame.
* This is both aggregate and non-aggregate aware.
*/
ath_tx_chaindesclist(sc, ds0, bf,
1, /* is_aggr */
!! (bf == bf_first), /* is_first_subframe */
!! (bf->bf_next == NULL) /* is_last_subframe */
);
if (bf == bf_first) {
/*
* Initialise the first 11n aggregate with the
* aggregate length and aggregate enable bits.
*/
ath_hal_set11n_aggr_first(sc->sc_ah,
ds0,
bf->bf_state.bfs_al,
bf->bf_state.bfs_ndelim);
}
/*
* Link the last descriptor of the previous frame
* to the beginning descriptor of this frame.
*/
if (bf_prev != NULL)
ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds,
bf->bf_daddr);
/* Save a copy so we can link the next descriptor in */
bf_prev = bf;
bf = bf->bf_next;
}
/*
* Set the first descriptor bf_lastds field to point to
* the last descriptor in the last subframe, that's where
* the status update will occur.
*/
bf_first->bf_lastds = bf_prev->bf_lastds;
/*
* And bf_last in the first descriptor points to the end of
* the aggregate list.
*/
bf_first->bf_last = bf_prev;
/*
* For non-AR9300 NICs, which require the rate control
* in the final descriptor - let's set that up now.
*
* This is because the filltxdesc() HAL call doesn't
* populate the last segment with rate control information
* if firstSeg is also true. For non-aggregate frames
* that is fine, as the first frame already has rate control
* info. But if the last frame in an aggregate has one
* descriptor, both firstseg and lastseg will be true and
* the rate info isn't copied.
*
* This is inefficient on MIPS/ARM platforms that have
* non-cachable memory for TX descriptors, but we'll just
* make do for now.
*
* As to why the rate table is stashed in the last descriptor
* rather than the first descriptor? Because proctxdesc()
* is called on the final descriptor in an MPDU or A-MPDU -
* ie, the one that gets updated by the hardware upon
* completion. That way proctxdesc() doesn't need to know
* about the first _and_ last TX descriptor.
*/
ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0);
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
}
/*
* Hand-off a frame to the multicast TX queue.
*
* This is a software TXQ which will be appended to the CAB queue
* during the beacon setup code.
*
* XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID
* as part of the TX descriptor, bf_state.bfs_tx_queue must be updated
* with the actual hardware txq, or all of this will fall apart.
*
* XXX It may not be a bad idea to just stuff the QCU ID into bf_state
* and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated
* correctly.
*/
static void
ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
ATH_TX_LOCK_ASSERT(sc);
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
("%s: busy status 0x%x", __func__, bf->bf_flags));
/*
* Ensure that the tx queue is the cabq, so things get
* mapped correctly.
*/
if (bf->bf_state.bfs_tx_queue != sc->sc_cabq->axq_qnum) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
__func__, bf, bf->bf_state.bfs_tx_queue,
txq->axq_qnum);
}
ATH_TXQ_LOCK(txq);
if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) {
struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s);
struct ieee80211_frame *wh;
/* mark previous frame */
wh = mtod(bf_last->bf_m, struct ieee80211_frame *);
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap,
BUS_DMASYNC_PREWRITE);
/* link descriptor */
ath_hal_settxdesclink(sc->sc_ah,
bf_last->bf_lastds,
bf->bf_daddr);
}
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
ATH_TXQ_UNLOCK(txq);
}
/*
* Hand-off packet to a hardware queue.
*/
static void
ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf_first;
/*
* Insert the frame on the outbound list and pass it on
* to the hardware. Multicast frames buffered for power
* save stations and transmit from the CAB queue are stored
* on a s/w only queue and loaded on to the CAB queue in
* the SWBA handler since frames only go out on DTIM and
* to avoid possible races.
*/
ATH_TX_LOCK_ASSERT(sc);
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
("%s: busy status 0x%x", __func__, bf->bf_flags));
KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
("ath_tx_handoff_hw called for mcast queue"));
/*
* XXX We should instead just verify that sc_txstart_cnt
* or ath_txproc_cnt > 0. That would mean that
* the reset is going to be waiting for us to complete.
*/
if (sc->sc_txproc_cnt == 0 && sc->sc_txstart_cnt == 0) {
device_printf(sc->sc_dev,
"%s: TX dispatch without holding txcount/txstart refcnt!\n",
__func__);
}
/*
* XXX .. this is going to cause the hardware to get upset;
* so we really should find some way to drop or queue
* things.
*/
ATH_TXQ_LOCK(txq);
/*
* XXX TODO: if there's a holdingbf, then
* ATH_TXQ_PUTRUNNING should be clear.
*
* If there is a holdingbf and the list is empty,
* then axq_link should be pointing to the holdingbf.
*
* Otherwise it should point to the last descriptor
* in the last ath_buf.
*
* In any case, we should really ensure that we
* update the previous descriptor link pointer to
* this descriptor, regardless of all of the above state.
*
* For now this is captured by having axq_link point
* to either the holdingbf (if the TXQ list is empty)
* or the end of the list (if the TXQ list isn't empty.)
* I'd rather just kill axq_link here and do it as above.
*/
/*
* Append the frame to the TX queue.
*/
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
ATH_KTR(sc, ATH_KTR_TX, 3,
"ath_tx_handoff: non-tdma: txq=%u, add bf=%p "
"depth=%d",
txq->axq_qnum,
bf,
txq->axq_depth);
/*
* If there's a link pointer, update it.
*
* XXX we should replace this with the above logic, just
* to kill axq_link with fire.
*/
if (txq->axq_link != NULL) {
*txq->axq_link = bf->bf_daddr;
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
txq->axq_qnum, txq->axq_link,
(caddr_t)bf->bf_daddr, bf->bf_desc,
txq->axq_depth);
ATH_KTR(sc, ATH_KTR_TX, 5,
"ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) "
"lastds=%d",
txq->axq_qnum, txq->axq_link,
(caddr_t)bf->bf_daddr, bf->bf_desc,
bf->bf_lastds);
}
/*
* If we've not pushed anything into the hardware yet,
* push the head of the queue into the TxDP.
*
* Once we've started DMA, there's no guarantee that
* updating the TxDP with a new value will actually work.
* So we just don't do that - if we hit the end of the list,
* we keep that buffer around (the "holding buffer") and
* re-start DMA by updating the link pointer of _that_
* descriptor and then restart DMA.
*/
if (! (txq->axq_flags & ATH_TXQ_PUTRUNNING)) {
bf_first = TAILQ_FIRST(&txq->axq_q);
txq->axq_flags |= ATH_TXQ_PUTRUNNING;
ath_hal_puttxbuf(ah, txq->axq_qnum, bf_first->bf_daddr);
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: TXDP[%u] = %p (%p) depth %d\n",
__func__, txq->axq_qnum,
(caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
txq->axq_depth);
ATH_KTR(sc, ATH_KTR_TX, 5,
"ath_tx_handoff: TXDP[%u] = %p (%p) "
"lastds=%p depth %d",
txq->axq_qnum,
(caddr_t)bf_first->bf_daddr, bf_first->bf_desc,
bf_first->bf_lastds,
txq->axq_depth);
}
/*
* Ensure that the bf TXQ matches this TXQ, so later
* checking and holding buffer manipulation is sane.
*/
if (bf->bf_state.bfs_tx_queue != txq->axq_qnum) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n",
__func__, bf, bf->bf_state.bfs_tx_queue,
txq->axq_qnum);
}
/*
* Track aggregate queue depth.
*/
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth++;
/*
* Update the link pointer.
*/
ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link);
/*
* Start DMA.
*
* If we wrote a TxDP above, DMA will start from here.
*
* If DMA is running, it'll do nothing.
*
* If the DMA engine hit the end of the QCU list (ie LINK=NULL,
* or VEOL) then it stops at the last transmitted write.
* We then append a new frame by updating the link pointer
* in that descriptor and then kick TxE here; it will re-read
* that last descriptor and find the new descriptor to transmit.
*
* This is why we keep the holding descriptor around.
*/
ath_hal_txstart(ah, txq->axq_qnum);
ATH_TXQ_UNLOCK(txq);
ATH_KTR(sc, ATH_KTR_TX, 1,
"ath_tx_handoff: txq=%u, txstart", txq->axq_qnum);
}
/*
* Restart TX DMA for the given TXQ.
*
* This must be called whether the queue is empty or not.
*/
static void
ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_buf *bf, *bf_last;
ATH_TXQ_LOCK_ASSERT(txq);
/* XXX make this ATH_TXQ_FIRST */
bf = TAILQ_FIRST(&txq->axq_q);
bf_last = ATH_TXQ_LAST(txq, axq_q_s);
if (bf == NULL)
return;
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: Q%d: bf=%p, bf_last=%p, daddr=0x%08x\n",
__func__,
txq->axq_qnum,
bf,
bf_last,
(uint32_t) bf->bf_daddr);
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET)
ath_tx_dump(sc, txq);
#endif
/*
* This is called from a restart, so DMA is known to be
* completely stopped.
*/
KASSERT((!(txq->axq_flags & ATH_TXQ_PUTRUNNING)),
("%s: Q%d: called with PUTRUNNING=1\n",
__func__,
txq->axq_qnum));
ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
txq->axq_flags |= ATH_TXQ_PUTRUNNING;
ath_hal_gettxdesclinkptr(sc->sc_ah, bf_last->bf_lastds,
&txq->axq_link);
ath_hal_txstart(sc->sc_ah, txq->axq_qnum);
}
/*
* Hand off a packet to the hardware (or mcast queue.)
*
* The relevant hardware txq should be locked.
*/
static void
ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
ATH_TX_LOCK_ASSERT(sc);
#ifdef ATH_DEBUG_ALQ
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC))
ath_tx_alq_post(sc, bf);
#endif
if (txq->axq_qnum == ATH_TXQ_SWQ)
ath_tx_handoff_mcast(sc, txq, bf);
else
ath_tx_handoff_hw(sc, txq, bf);
}
static int
ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
int *keyix)
{
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
__func__,
*hdrlen,
*pktlen,
isfrag,
iswep,
m0);
if (iswep) {
const struct ieee80211_cipher *cip;
struct ieee80211_key *k;
/*
* Construct the 802.11 header+trailer for an encrypted
* frame. The only reason this can fail is because of an
* unknown or unsupported cipher/key type.
*/
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
/*
* This can happen when the key is yanked after the
* frame was queued. Just discard the frame; the
* 802.11 layer counts failures and provides
* debugging/diagnostics.
*/
return (0);
}
/*
* Adjust the packet + header lengths for the crypto
* additions and calculate the h/w key index. When
* a s/w mic is done the frame will have had any mic
* added to it prior to entry so m0->m_pkthdr.len will
* account for it. Otherwise we need to add it to the
* packet length.
*/
cip = k->wk_cipher;
(*hdrlen) += cip->ic_header;
(*pktlen) += cip->ic_header + cip->ic_trailer;
/* NB: frags always have any TKIP MIC done in s/w */
if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
(*pktlen) += cip->ic_miclen;
(*keyix) = k->wk_keyix;
} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
/*
* Use station key cache slot, if assigned.
*/
(*keyix) = ni->ni_ucastkey.wk_keyix;
if ((*keyix) == IEEE80211_KEYIX_NONE)
(*keyix) = HAL_TXKEYIX_INVALID;
} else
(*keyix) = HAL_TXKEYIX_INVALID;
return (1);
}
/*
* Calculate whether interoperability protection is required for
* this frame.
*
* This requires the rate control information be filled in,
* as the protection requirement depends upon the current
* operating mode / PHY.
*/
static void
ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_frame *wh;
uint8_t rix;
uint16_t flags;
int shortPreamble;
const HAL_RATE_TABLE *rt = sc->sc_currates;
struct ieee80211com *ic = &sc->sc_ic;
flags = bf->bf_state.bfs_txflags;
rix = bf->bf_state.bfs_rc[0].rix;
shortPreamble = bf->bf_state.bfs_shpream;
wh = mtod(bf->bf_m, struct ieee80211_frame *);
/* Disable frame protection for TOA probe frames */
if (bf->bf_flags & ATH_BUF_TOA_PROBE) {
/* XXX count */
flags &= ~(HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA);
bf->bf_state.bfs_doprot = 0;
goto finish;
}
/*
* If 802.11g protection is enabled, determine whether
* to use RTS/CTS or just CTS. Note that this is only
* done for OFDM unicast frames.
*/
if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
rt->info[rix].phy == IEEE80211_T_OFDM &&
(flags & HAL_TXDESC_NOACK) == 0) {
bf->bf_state.bfs_doprot = 1;
/* XXX fragments must use CCK rates w/ protection */
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
flags |= HAL_TXDESC_RTSENA;
} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
flags |= HAL_TXDESC_CTSENA;
}
/*
* For frags it would be desirable to use the
* highest CCK rate for RTS/CTS. But stations
* farther away may detect it at a lower CCK rate
* so use the configured protection rate instead
* (for now).
*/
sc->sc_stats.ast_tx_protect++;
}
/*
* If 11n protection is enabled and it's a HT frame,
* enable RTS.
*
* XXX ic_htprotmode or ic_curhtprotmode?
* XXX should it_htprotmode only matter if ic_curhtprotmode
* XXX indicates it's not a HT pure environment?
*/
if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
rt->info[rix].phy == IEEE80211_T_HT &&
(flags & HAL_TXDESC_NOACK) == 0) {
flags |= HAL_TXDESC_RTSENA;
sc->sc_stats.ast_tx_htprotect++;
}
finish:
bf->bf_state.bfs_txflags = flags;
}
/*
* Update the frame duration given the currently selected rate.
*
* This also updates the frame duration value, so it will require
* a DMA flush.
*/
static void
ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_frame *wh;
uint8_t rix;
uint16_t flags;
int shortPreamble;
struct ath_hal *ah = sc->sc_ah;
const HAL_RATE_TABLE *rt = sc->sc_currates;
int isfrag = bf->bf_m->m_flags & M_FRAG;
flags = bf->bf_state.bfs_txflags;
rix = bf->bf_state.bfs_rc[0].rix;
shortPreamble = bf->bf_state.bfs_shpream;
wh = mtod(bf->bf_m, struct ieee80211_frame *);
/*
* Calculate duration. This logically belongs in the 802.11
* layer but it lacks sufficient information to calculate it.
*/
if ((flags & HAL_TXDESC_NOACK) == 0 &&
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
u_int16_t dur;
if (shortPreamble)
dur = rt->info[rix].spAckDuration;
else
dur = rt->info[rix].lpAckDuration;
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
dur += dur; /* additional SIFS+ACK */
/*
* Include the size of next fragment so NAV is
* updated properly. The last fragment uses only
* the ACK duration
*
* XXX TODO: ensure that the rate lookup for each
* fragment is the same as the rate used by the
* first fragment!
*/
dur += ath_hal_computetxtime(ah,
rt,
bf->bf_nextfraglen,
rix, shortPreamble,
AH_TRUE);
}
if (isfrag) {
/*
* Force hardware to use computed duration for next
* fragment by disabling multi-rate retry which updates
* duration based on the multi-rate duration table.
*/
bf->bf_state.bfs_ismrr = 0;
bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
/* XXX update bfs_rc[0].try? */
}
/* Update the duration field itself */
*(u_int16_t *)wh->i_dur = htole16(dur);
}
}
static uint8_t
ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
int cix, int shortPreamble)
{
uint8_t ctsrate;
/*
* CTS transmit rate is derived from the transmit rate
* by looking in the h/w rate table. We must also factor
* in whether or not a short preamble is to be used.
*/
/* NB: cix is set above where RTS/CTS is enabled */
KASSERT(cix != 0xff, ("cix not setup"));
ctsrate = rt->info[cix].rateCode;
/* XXX this should only matter for legacy rates */
if (shortPreamble)
ctsrate |= rt->info[cix].shortPreamble;
return (ctsrate);
}
/*
* Calculate the RTS/CTS duration for legacy frames.
*/
static int
ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
int flags)
{
int ctsduration = 0;
/* This mustn't be called for HT modes */
if (rt->info[cix].phy == IEEE80211_T_HT) {
printf("%s: HT rate where it shouldn't be (0x%x)\n",
__func__, rt->info[cix].rateCode);
return (-1);
}
/*
* Compute the transmit duration based on the frame
* size and the size of an ACK frame. We call into the
* HAL to do the computation since it depends on the
* characteristics of the actual PHY being used.
*
* NB: CTS is assumed the same size as an ACK so we can
* use the precalculated ACK durations.
*/
if (shortPreamble) {
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
ctsduration += rt->info[cix].spAckDuration;
ctsduration += ath_hal_computetxtime(ah,
rt, pktlen, rix, AH_TRUE, AH_TRUE);
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
ctsduration += rt->info[rix].spAckDuration;
} else {
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
ctsduration += rt->info[cix].lpAckDuration;
ctsduration += ath_hal_computetxtime(ah,
rt, pktlen, rix, AH_FALSE, AH_TRUE);
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
ctsduration += rt->info[rix].lpAckDuration;
}
return (ctsduration);
}
/*
* Update the given ath_buf with updated rts/cts setup and duration
* values.
*
* To support rate lookups for each software retry, the rts/cts rate
* and cts duration must be re-calculated.
*
* This function assumes the RTS/CTS flags have been set as needed;
* mrr has been disabled; and the rate control lookup has been done.
*
* XXX TODO: MRR need only be disabled for the pre-11n NICs.
* XXX The 11n NICs support per-rate RTS/CTS configuration.
*/
static void
ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
{
uint16_t ctsduration = 0;
uint8_t ctsrate = 0;
uint8_t rix = bf->bf_state.bfs_rc[0].rix;
uint8_t cix = 0;
const HAL_RATE_TABLE *rt = sc->sc_currates;
/*
* No RTS/CTS enabled? Don't bother.
*/
if ((bf->bf_state.bfs_txflags &
(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
/* XXX is this really needed? */
bf->bf_state.bfs_ctsrate = 0;
bf->bf_state.bfs_ctsduration = 0;
return;
}
/*
* If protection is enabled, use the protection rix control
* rate. Otherwise use the rate0 control rate.
*/
if (bf->bf_state.bfs_doprot)
rix = sc->sc_protrix;
else
rix = bf->bf_state.bfs_rc[0].rix;
/*
* If the raw path has hard-coded ctsrate0 to something,
* use it.
*/
if (bf->bf_state.bfs_ctsrate0 != 0)
cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
else
/* Control rate from above */
cix = rt->info[rix].controlRate;
/* Calculate the rtscts rate for the given cix */
ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
bf->bf_state.bfs_shpream);
/* The 11n chipsets do ctsduration calculations for you */
if (! ath_tx_is_11n(sc))
ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
rt, bf->bf_state.bfs_txflags);
/* Squirrel away in ath_buf */
bf->bf_state.bfs_ctsrate = ctsrate;
bf->bf_state.bfs_ctsduration = ctsduration;
/*
* Must disable multi-rate retry when using RTS/CTS.
*/
if (!sc->sc_mrrprot) {
bf->bf_state.bfs_ismrr = 0;
bf->bf_state.bfs_try0 =
bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
}
}
/*
* Setup the descriptor chain for a normal or fast-frame
* frame.
*
* XXX TODO: extend to include the destination hardware QCU ID.
* Make sure that is correct. Make sure that when being added
* to the mcastq, the CABQ QCUID is set or things will get a bit
* odd.
*/
static void
ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_desc *ds = bf->bf_desc;
struct ath_hal *ah = sc->sc_ah;
if (bf->bf_state.bfs_txrate0 == 0)
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: bf=%p, txrate0=%d\n", __func__, bf, 0);
ath_hal_setuptxdesc(ah, ds
, bf->bf_state.bfs_pktlen /* packet length */
, bf->bf_state.bfs_hdrlen /* header length */
, bf->bf_state.bfs_atype /* Atheros packet type */
, bf->bf_state.bfs_txpower /* txpower */
, bf->bf_state.bfs_txrate0
, bf->bf_state.bfs_try0 /* series 0 rate/tries */
, bf->bf_state.bfs_keyix /* key cache index */
, bf->bf_state.bfs_txantenna /* antenna mode */
, bf->bf_state.bfs_txflags /* flags */
, bf->bf_state.bfs_ctsrate /* rts/cts rate */
, bf->bf_state.bfs_ctsduration /* rts/cts duration */
);
/*
* This will be overriden when the descriptor chain is written.
*/
bf->bf_lastds = ds;
bf->bf_last = bf;
/* Set rate control and descriptor chain for this frame */
ath_tx_set_ratectrl(sc, bf->bf_node, bf);
ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0);
}
/*
* Do a rate lookup.
*
* This performs a rate lookup for the given ath_buf only if it's required.
* Non-data frames and raw frames don't require it.
*
* This populates the primary and MRR entries; MRR values are
* then disabled later on if something requires it (eg RTS/CTS on
* pre-11n chipsets.
*
* This needs to be done before the RTS/CTS fields are calculated
* as they may depend upon the rate chosen.
*/
static void
ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
{
uint8_t rate, rix;
int try0;
if (! bf->bf_state.bfs_doratelookup)
return;
/* Get rid of any previous state */
bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
/* In case MRR is disabled, make sure rc[0] is setup correctly */
bf->bf_state.bfs_rc[0].rix = rix;
bf->bf_state.bfs_rc[0].ratecode = rate;
bf->bf_state.bfs_rc[0].tries = try0;
if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
bf->bf_state.bfs_rc);
ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
sc->sc_txrix = rix; /* for LED blinking */
sc->sc_lastdatarix = rix; /* for fast frames */
bf->bf_state.bfs_try0 = try0;
bf->bf_state.bfs_txrate0 = rate;
}
/*
* Update the CLRDMASK bit in the ath_buf if it needs to be set.
*/
static void
ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid,
struct ath_buf *bf)
{
struct ath_node *an = ATH_NODE(bf->bf_node);
ATH_TX_LOCK_ASSERT(sc);
if (an->clrdmask == 1) {
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
an->clrdmask = 0;
}
}
/*
* Return whether this frame should be software queued or
* direct dispatched.
*
* When doing powersave, BAR frames should be queued but other management
* frames should be directly sent.
*
* When not doing powersave, stick BAR frames into the hardware queue
* so it goes out even though the queue is paused.
*
* For now, management frames are also software queued by default.
*/
static int
ath_tx_should_swq_frame(struct ath_softc *sc, struct ath_node *an,
struct mbuf *m0, int *queue_to_head)
{
struct ieee80211_node *ni = &an->an_node;
struct ieee80211_frame *wh;
uint8_t type, subtype;
wh = mtod(m0, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
(*queue_to_head) = 0;
/* If it's not in powersave - direct-dispatch BAR */
if ((ATH_NODE(ni)->an_is_powersave == 0)
&& type == IEEE80211_FC0_TYPE_CTL &&
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: BAR: TX'ing direct\n", __func__);
return (0);
} else if ((ATH_NODE(ni)->an_is_powersave == 1)
&& type == IEEE80211_FC0_TYPE_CTL &&
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
/* BAR TX whilst asleep; queue */
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: swq: TX'ing\n", __func__);
(*queue_to_head) = 1;
return (1);
} else if ((ATH_NODE(ni)->an_is_powersave == 1)
&& (type == IEEE80211_FC0_TYPE_MGT ||
type == IEEE80211_FC0_TYPE_CTL)) {
/*
* Other control/mgmt frame; bypass software queuing
* for now!
*/
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: %6D: Node is asleep; sending mgmt "
"(type=%d, subtype=%d)\n",
__func__, ni->ni_macaddr, ":", type, subtype);
return (0);
} else {
return (1);
}
}
/*
* Transmit the given frame to the hardware.
*
* The frame must already be setup; rate control must already have
* been done.
*
* XXX since the TXQ lock is being held here (and I dislike holding
* it for this long when not doing software aggregation), later on
* break this function into "setup_normal" and "xmit_normal". The
* lock only needs to be held for the ath_tx_handoff call.
*
* XXX we don't update the leak count here - if we're doing
* direct frame dispatch, we need to be able to do it without
* decrementing the leak count (eg multicast queue frames.)
*/
static void
ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
struct ath_buf *bf)
{
struct ath_node *an = ATH_NODE(bf->bf_node);
struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
ATH_TX_LOCK_ASSERT(sc);
/*
* For now, just enable CLRDMASK. ath_tx_xmit_normal() does
* set a completion handler however it doesn't (yet) properly
* handle the strict ordering requirements needed for normal,
* non-aggregate session frames.
*
* Once this is implemented, only set CLRDMASK like this for
* frames that must go out - eg management/raw frames.
*/
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
/* Setup the descriptor before handoff */
ath_tx_do_ratelookup(sc, bf);
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
ath_tx_setds(sc, bf);
/* Track per-TID hardware queue depth correctly */
tid->hwq_depth++;
/* Assign the completion handler */
bf->bf_comp = ath_tx_normal_comp;
/* Hand off to hardware */
ath_tx_handoff(sc, txq, bf);
}
/*
* Do the basic frame setup stuff that's required before the frame
* is added to a software queue.
*
* All frames get mostly the same treatment and it's done once.
* Retransmits fiddle with things like the rate control setup,
* setting the retransmit bit in the packet; doing relevant DMA/bus
* syncing and relinking it (back) into the hardware TX queue.
*
* Note that this may cause the mbuf to be reallocated, so
* m0 may not be valid.
*/
static int
ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = &sc->sc_ic;
int error, iswep, ismcast, isfrag, ismrr;
int keyix, hdrlen, pktlen, try0 = 0;
u_int8_t rix = 0, txrate = 0;
struct ath_desc *ds;
struct ieee80211_frame *wh;
u_int subtype, flags;
HAL_PKT_TYPE atype;
const HAL_RATE_TABLE *rt;
HAL_BOOL shortPreamble;
struct ath_node *an;
/* XXX TODO: this pri is only used for non-QoS check, right? */
u_int pri;
/*
* To ensure that both sequence numbers and the CCMP PN handling
* is "correct", make sure that the relevant TID queue is locked.
* Otherwise the CCMP PN and seqno may appear out of order, causing
* re-ordered frames to have out of order CCMP PN's, resulting
* in many, many frame drops.
*/
ATH_TX_LOCK_ASSERT(sc);
wh = mtod(m0, struct ieee80211_frame *);
iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
isfrag = m0->m_flags & M_FRAG;
hdrlen = ieee80211_anyhdrsize(wh);
/*
* Packet length must not include any
* pad bytes; deduct them here.
*/
pktlen = m0->m_pkthdr.len - (hdrlen & 3);
/* Handle encryption twiddling if needed */
if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
&pktlen, &keyix)) {
ieee80211_free_mbuf(m0);
return EIO;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
pktlen += IEEE80211_CRC_LEN;
/*
* Load the DMA map so any coalescing is done. This
* also calculates the number of descriptors we need.
*/
error = ath_tx_dmasetup(sc, bf, m0);
if (error != 0)
return error;
KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
bf->bf_node = ni; /* NB: held reference */
m0 = bf->bf_m; /* NB: may have changed */
wh = mtod(m0, struct ieee80211_frame *);
/* setup descriptors */
ds = bf->bf_desc;
rt = sc->sc_currates;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
/*
* NB: the 802.11 layer marks whether or not we should
* use short preamble based on the current mode and
* negotiated parameters.
*/
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
shortPreamble = AH_TRUE;
sc->sc_stats.ast_tx_shortpre++;
} else {
shortPreamble = AH_FALSE;
}
an = ATH_NODE(ni);
//flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
flags = 0;
ismrr = 0; /* default no multi-rate retry*/
pri = ath_tx_getac(sc, m0); /* honor classification */
/* XXX use txparams instead of fixed values */
/*
* Calculate Atheros packet type from IEEE80211 packet header,
* setup for rate calculations, and select h/w transmit queue.
*/
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_MGT:
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
atype = HAL_PKT_TYPE_BEACON;
else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
atype = HAL_PKT_TYPE_PROBE_RESP;
else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
atype = HAL_PKT_TYPE_ATIM;
else
atype = HAL_PKT_TYPE_NORMAL; /* XXX */
rix = an->an_mgmtrix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = ATH_TXMGTTRY;
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
break;
case IEEE80211_FC0_TYPE_CTL:
atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
rix = an->an_mgmtrix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = ATH_TXMGTTRY;
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
break;
case IEEE80211_FC0_TYPE_DATA:
atype = HAL_PKT_TYPE_NORMAL; /* default */
/*
* Data frames: multicast frames go out at a fixed rate,
* EAPOL frames use the mgmt frame rate; otherwise consult
* the rate control module for the rate to use.
*/
if (ismcast) {
rix = an->an_mcastrix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = 1;
} else if (m0->m_flags & M_EAPOL) {
/* XXX? maybe always use long preamble? */
rix = an->an_mgmtrix;
txrate = rt->info[rix].rateCode;
if (shortPreamble)
txrate |= rt->info[rix].shortPreamble;
try0 = ATH_TXMAXTRY; /* XXX?too many? */
} else {
/*
* Do rate lookup on each TX, rather than using
* the hard-coded TX information decided here.
*/
ismrr = 1;
bf->bf_state.bfs_doratelookup = 1;
}
/*
* Check whether to set NOACK for this WME category or not.
*/
if (ieee80211_wme_vap_ac_is_noack(vap, pri))
flags |= HAL_TXDESC_NOACK;
break;
default:
device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
/* XXX statistic */
/* XXX free tx dmamap */
ieee80211_free_mbuf(m0);
return EIO;
}
/*
* There are two known scenarios where the frame AC doesn't match
* what the destination TXQ is.
*
* + non-QoS frames (eg management?) that the net80211 stack has
* assigned a higher AC to, but since it's a non-QoS TID, it's
* being thrown into TID 16. TID 16 gets the AC_BE queue.
* It's quite possible that management frames should just be
* direct dispatched to hardware rather than go via the software
* queue; that should be investigated in the future. There are
* some specific scenarios where this doesn't make sense, mostly
* surrounding ADDBA request/response - hence why that is special
* cased.
*
* + Multicast frames going into the VAP mcast queue. That shows up
* as "TXQ 11".
*
* This driver should eventually support separate TID and TXQ locking,
* allowing for arbitrary AC frames to appear on arbitrary software
* queues, being queued to the "correct" hardware queue when needed.
*/
#if 0
if (txq != sc->sc_ac2q[pri]) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n",
__func__,
txq,
txq->axq_qnum,
pri,
sc->sc_ac2q[pri],
sc->sc_ac2q[pri]->axq_qnum);
}
#endif
/*
* Calculate miscellaneous flags.
*/
if (ismcast) {
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
} else if (pktlen > vap->iv_rtsthreshold &&
(ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
sc->sc_stats.ast_tx_rts++;
}
if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
sc->sc_stats.ast_tx_noack++;
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
DPRINTF(sc, ATH_DEBUG_TDMA,
"%s: discard frame, ACK required w/ TDMA\n", __func__);
sc->sc_stats.ast_tdma_ack++;
/* XXX free tx dmamap */
ieee80211_free_mbuf(m0);
return EIO;
}
#endif
/*
* If it's a frame to do location reporting on,
* communicate it to the HAL.
*/
if (ieee80211_get_toa_params(m0, NULL)) {
device_printf(sc->sc_dev,
"%s: setting TX positioning bit\n", __func__);
flags |= HAL_TXDESC_POS;
/*
* Note: The hardware reports timestamps for
* each of the RX'ed packets as part of the packet
* exchange. So this means things like RTS/CTS
* exchanges, as well as the final ACK.
*
* So, if you send a RTS-protected NULL data frame,
* you'll get an RX report for the RTS response, then
* an RX report for the NULL frame, and then the TX
* completion at the end.
*
* NOTE: it doesn't work right for CCK frames;
* there's no channel info data provided unless
* it's OFDM or HT. Will have to dig into it.
*/
flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
bf->bf_flags |= ATH_BUF_TOA_PROBE;
}
#if 0
/*
* Placeholder: if you want to transmit with the azimuth
* timestamp in the end of the payload, here's where you
* should set the TXDESC field.
*/
flags |= HAL_TXDESC_HWTS;
#endif
/*
* Determine if a tx interrupt should be generated for
* this descriptor. We take a tx interrupt to reap
* descriptors when the h/w hits an EOL condition or
* when the descriptor is specifically marked to generate
* an interrupt. We periodically mark descriptors in this
* way to insure timely replenishing of the supply needed
* for sending frames. Defering interrupts reduces system
* load and potentially allows more concurrent work to be
* done but if done to aggressively can cause senders to
* backup.
*
* NB: use >= to deal with sc_txintrperiod changing
* dynamically through sysctl.
*/
if (flags & HAL_TXDESC_INTREQ) {
txq->axq_intrcnt = 0;
} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
flags |= HAL_TXDESC_INTREQ;
txq->axq_intrcnt = 0;
}
/* This point forward is actual TX bits */
/*
* At this point we are committed to sending the frame
* and we don't need to look at m_nextpkt; clear it in
* case this frame is part of frag chain.
*/
m0->m_nextpkt = NULL;
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
sc->sc_hwmap[rix].ieeerate, -1);
if (ieee80211_radiotap_active_vap(vap)) {
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
if (iswep)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
if (isfrag)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
sc->sc_tx_th.wt_txpower = ieee80211_get_node_txpower(ni);
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
ieee80211_radiotap_tx(vap, m0);
}
/* Blank the legacy rate array */
bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
/*
* ath_buf_set_rate needs at least one rate/try to setup
* the rate scenario.
*/
bf->bf_state.bfs_rc[0].rix = rix;
bf->bf_state.bfs_rc[0].tries = try0;
bf->bf_state.bfs_rc[0].ratecode = txrate;
/* Store the decided rate index values away */
bf->bf_state.bfs_pktlen = pktlen;
bf->bf_state.bfs_hdrlen = hdrlen;
bf->bf_state.bfs_atype = atype;
bf->bf_state.bfs_txpower = ieee80211_get_node_txpower(ni);
bf->bf_state.bfs_txrate0 = txrate;
bf->bf_state.bfs_try0 = try0;
bf->bf_state.bfs_keyix = keyix;
bf->bf_state.bfs_txantenna = sc->sc_txantenna;
bf->bf_state.bfs_txflags = flags;
bf->bf_state.bfs_shpream = shortPreamble;
/* XXX this should be done in ath_tx_setrate() */
bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */
bf->bf_state.bfs_ctsrate = 0; /* calculated later */
bf->bf_state.bfs_ctsduration = 0;
bf->bf_state.bfs_ismrr = ismrr;
return 0;
}
/*
* Queue a frame to the hardware or software queue.
*
* This can be called by the net80211 code.
*
* XXX what about locking? Or, push the seqno assign into the
* XXX aggregate scheduler so its serialised?
*
* XXX When sending management frames via ath_raw_xmit(),
* should CLRDMASK be set unconditionally?
*/
int
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf, struct mbuf *m0)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_vap *avp = ATH_VAP(vap);
int r = 0;
u_int pri;
int tid;
struct ath_txq *txq;
int ismcast;
const struct ieee80211_frame *wh;
int is_ampdu, is_ampdu_tx, is_ampdu_pending;
ieee80211_seq seqno;
uint8_t type, subtype;
int queue_to_head;
ATH_TX_LOCK_ASSERT(sc);
/*
* Determine the target hardware queue.
*
* For multicast frames, the txq gets overridden appropriately
* depending upon the state of PS. If powersave is enabled
* then they get added to the cabq for later transmit.
*
* The "fun" issue here is that group addressed frames should
* have the sequence number from a different pool, rather than
* the per-TID pool. That means that even QoS group addressed
* frames will have a sequence number from that global value,
* which means if we transmit different group addressed frames
* at different traffic priorities, the sequence numbers will
* all be out of whack. So - chances are, the right thing
* to do here is to always put group addressed frames into the BE
* queue, and ignore the TID for queue selection.
*
* For any other frame, we do a TID/QoS lookup inside the frame
* to see what the TID should be. If it's a non-QoS frame, the
* AC and TID are overridden. The TID/TXQ code assumes the
* TID is on a predictable hardware TXQ, so we don't support
* having a node TID queued to multiple hardware TXQs.
* This may change in the future but would require some locking
* fudgery.
*/
pri = ath_tx_getac(sc, m0);
tid = ath_tx_gettid(sc, m0);
txq = sc->sc_ac2q[pri];
wh = mtod(m0, struct ieee80211_frame *);
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
/*
* Enforce how deep the multicast queue can grow.
*
* XXX duplicated in ath_raw_xmit().
*/
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
> sc->sc_txq_mcastq_maxdepth) {
sc->sc_stats.ast_tx_mcastq_overflow++;
m_freem(m0);
return (ENOBUFS);
}
}
/*
* Enforce how deep the unicast queue can grow.
*
* If the node is in power save then we don't want
* the software queue to grow too deep, or a node may
* end up consuming all of the ath_buf entries.
*
* For now, only do this for DATA frames.
*
* We will want to cap how many management/control
* frames get punted to the software queue so it doesn't
* fill up. But the correct solution isn't yet obvious.
* In any case, this check should at least let frames pass
* that we are direct-dispatching.
*
* XXX TODO: duplicate this to the raw xmit path!
*/
if (type == IEEE80211_FC0_TYPE_DATA &&
ATH_NODE(ni)->an_is_powersave &&
ATH_NODE(ni)->an_swq_depth >
sc->sc_txq_node_psq_maxdepth) {
sc->sc_stats.ast_tx_node_psq_overflow++;
m_freem(m0);
return (ENOBUFS);
}
/* A-MPDU TX */
is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
is_ampdu = is_ampdu_tx | is_ampdu_pending;
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
__func__, tid, pri, is_ampdu);
/* Set local packet state, used to queue packets to hardware */
bf->bf_state.bfs_tid = tid;
bf->bf_state.bfs_tx_queue = txq->axq_qnum;
bf->bf_state.bfs_pri = pri;
#if 1
/*
* When servicing one or more stations in power-save mode
* (or) if there is some mcast data waiting on the mcast
* queue (to prevent out of order delivery) multicast frames
* must be bufferd until after the beacon.
*
* TODO: we should lock the mcastq before we check the length.
*/
if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) {
txq = &avp->av_mcastq;
/*
* Mark the frame as eventually belonging on the CAB
* queue, so the descriptor setup functions will
* correctly initialise the descriptor 'qcuId' field.
*/
bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum;
}
#endif
/* Do the generic frame setup */
/* XXX should just bzero the bf_state? */
bf->bf_state.bfs_dobaw = 0;
/* A-MPDU TX? Manually set sequence number */
/*
* Don't do it whilst pending; the net80211 layer still
* assigns them.
*
* Don't assign A-MPDU sequence numbers to group address
* frames; they come from a different sequence number space.
*/
if (is_ampdu_tx && (! IEEE80211_IS_MULTICAST(wh->i_addr1))) {
/*
* Always call; this function will
* handle making sure that null data frames
* and group-addressed frames don't get a sequence number
* from the current TID and thus mess with the BAW.
*/
seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
/*
* Don't add QoS NULL frames and group-addressed frames
* to the BAW.
*/
if (IEEE80211_QOS_HAS_SEQ(wh) &&
(! IEEE80211_IS_MULTICAST(wh->i_addr1)) &&
(subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL)) {
bf->bf_state.bfs_dobaw = 1;
}
}
/*
* If needed, the sequence number has been assigned.
* Squirrel it away somewhere easy to get to.
*/
bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
/* Is ampdu pending? fetch the seqno and print it out */
if (is_ampdu_pending)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: tid %d: ampdu pending, seqno %d\n",
__func__, tid, M_SEQNO_GET(m0));
/* This also sets up the DMA map; crypto; frame parameters, etc */
r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
if (r != 0)
goto done;
/* At this point m0 could have changed! */
m0 = bf->bf_m;
#if 1
/*
* If it's a multicast frame, do a direct-dispatch to the
* destination hardware queue. Don't bother software
* queuing it.
*/
/*
* If it's a BAR frame, do a direct dispatch to the
* destination hardware queue. Don't bother software
* queuing it, as the TID will now be paused.
* Sending a BAR frame can occur from the net80211 txa timer
* (ie, retries) or from the ath txtask (completion call.)
* It queues directly to hardware because the TID is paused
* at this point (and won't be unpaused until the BAR has
* either been TXed successfully or max retries has been
* reached.)
*/
/*
* Until things are better debugged - if this node is asleep
* and we're sending it a non-BAR frame, direct dispatch it.
* Why? Because we need to figure out what's actually being
* sent - eg, during reassociation/reauthentication after
* the node (last) disappeared whilst asleep, the driver should
* have unpaused/unsleep'ed the node. So until that is
* sorted out, use this workaround.
*/
if (txq == &avp->av_mcastq) {
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
ath_tx_xmit_normal(sc, txq, bf);
} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
&queue_to_head)) {
ath_tx_swq(sc, ni, txq, queue_to_head, bf);
} else {
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
ath_tx_xmit_normal(sc, txq, bf);
}
#else
/*
* For now, since there's no software queue,
* direct-dispatch to the hardware.
*/
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
/*
* Update the current leak count if
* we're leaking frames; and set the
* MORE flag as appropriate.
*/
ath_tx_leak_count_update(sc, tid, bf);
ath_tx_xmit_normal(sc, txq, bf);
#endif
done:
return 0;
}
static int
ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf, struct mbuf *m0,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = ni->ni_vap;
int error, ismcast, ismrr;
int keyix, hdrlen, pktlen, try0, txantenna;
u_int8_t rix, txrate;
struct ieee80211_frame *wh;
u_int flags;
HAL_PKT_TYPE atype;
const HAL_RATE_TABLE *rt;
struct ath_desc *ds;
u_int pri;
int o_tid = -1;
int do_override;
uint8_t type, subtype;
int queue_to_head;
struct ath_node *an = ATH_NODE(ni);
ATH_TX_LOCK_ASSERT(sc);
wh = mtod(m0, struct ieee80211_frame *);
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
hdrlen = ieee80211_anyhdrsize(wh);
/*
* Packet length must not include any
* pad bytes; deduct them here.
*/
/* XXX honor IEEE80211_BPF_DATAPAD */
pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
ATH_KTR(sc, ATH_KTR_TX, 2,
"ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf);
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
__func__, ismcast);
pri = params->ibp_pri & 3;
/* Override pri if the frame isn't a QoS one */
if (! IEEE80211_QOS_HAS_SEQ(wh))
pri = ath_tx_getac(sc, m0);
/* XXX If it's an ADDBA, override the correct queue */
do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
/* Map ADDBA to the correct priority */
if (do_override) {
#if 1
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: overriding tid %d pri %d -> %d\n",
__func__, o_tid, pri, TID_TO_WME_AC(o_tid));
#endif
pri = TID_TO_WME_AC(o_tid);
}
/*
* "pri" is the hardware queue to transmit on.
*
* Look at the description in ath_tx_start() to understand
* what needs to be "fixed" here so we just use the TID
* for QoS frames.
*/
/* Handle encryption twiddling if needed */
if (! ath_tx_tag_crypto(sc, ni,
m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
&hdrlen, &pktlen, &keyix)) {
ieee80211_free_mbuf(m0);
return EIO;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
/* Do the generic frame setup */
/* XXX should just bzero the bf_state? */
bf->bf_state.bfs_dobaw = 0;
error = ath_tx_dmasetup(sc, bf, m0);
if (error != 0)
return error;
m0 = bf->bf_m; /* NB: may have changed */
wh = mtod(m0, struct ieee80211_frame *);
KASSERT((ni != NULL), ("%s: ni=NULL!", __func__));
bf->bf_node = ni; /* NB: held reference */
/* Always enable CLRDMASK for raw frames for now.. */
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
if (params->ibp_flags & IEEE80211_BPF_RTS)
flags |= HAL_TXDESC_RTSENA;
else if (params->ibp_flags & IEEE80211_BPF_CTS) {
/* XXX assume 11g/11n protection? */
bf->bf_state.bfs_doprot = 1;
flags |= HAL_TXDESC_CTSENA;
}
/* XXX leave ismcast to injector? */
if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
flags |= HAL_TXDESC_NOACK;
rt = sc->sc_currates;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
/* Fetch first rate information */
rix = ath_tx_findrix(sc, params->ibp_rate0);
try0 = params->ibp_try0;
/*
* Override EAPOL rate as appropriate.
*/
if (m0->m_flags & M_EAPOL) {
/* XXX? maybe always use long preamble? */
rix = an->an_mgmtrix;
try0 = ATH_TXMAXTRY; /* XXX?too many? */
}
/*
* If it's a frame to do location reporting on,
* communicate it to the HAL.
*/
if (ieee80211_get_toa_params(m0, NULL)) {
device_printf(sc->sc_dev,
"%s: setting TX positioning bit\n", __func__);
flags |= HAL_TXDESC_POS;
flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
bf->bf_flags |= ATH_BUF_TOA_PROBE;
}
txrate = rt->info[rix].rateCode;
if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
txrate |= rt->info[rix].shortPreamble;
sc->sc_txrix = rix;
ismrr = (params->ibp_try1 != 0);
txantenna = params->ibp_pri >> 2;
if (txantenna == 0) /* XXX? */
txantenna = sc->sc_txantenna;
/*
* Since ctsrate is fixed, store it away for later
* use when the descriptor fields are being set.
*/
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
/*
* NB: we mark all packets as type PSPOLL so the h/w won't
* set the sequence number, duration, etc.
*/
atype = HAL_PKT_TYPE_PSPOLL;
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
sc->sc_hwmap[rix].ieeerate, -1);
if (ieee80211_radiotap_active_vap(vap)) {
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
if (m0->m_flags & M_FRAG)
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
sc->sc_tx_th.wt_txpower = MIN(params->ibp_power,
ieee80211_get_node_txpower(ni));
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
ieee80211_radiotap_tx(vap, m0);
}
/*
* Formulate first tx descriptor with tx controls.
*/
ds = bf->bf_desc;
/* XXX check return value? */
/* Store the decided rate index values away */
bf->bf_state.bfs_pktlen = pktlen;
bf->bf_state.bfs_hdrlen = hdrlen;
bf->bf_state.bfs_atype = atype;
bf->bf_state.bfs_txpower = MIN(params->ibp_power,
ieee80211_get_node_txpower(ni));
bf->bf_state.bfs_txrate0 = txrate;
bf->bf_state.bfs_try0 = try0;
bf->bf_state.bfs_keyix = keyix;
bf->bf_state.bfs_txantenna = txantenna;
bf->bf_state.bfs_txflags = flags;
bf->bf_state.bfs_shpream =
!! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
/* Set local packet state, used to queue packets to hardware */
bf->bf_state.bfs_tid = WME_AC_TO_TID(pri);
bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum;
bf->bf_state.bfs_pri = pri;
/* XXX this should be done in ath_tx_setrate() */
bf->bf_state.bfs_ctsrate = 0;
bf->bf_state.bfs_ctsduration = 0;
bf->bf_state.bfs_ismrr = ismrr;
/* Blank the legacy rate array */
bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
bf->bf_state.bfs_rc[0].rix = rix;
bf->bf_state.bfs_rc[0].tries = try0;
bf->bf_state.bfs_rc[0].ratecode = txrate;
if (ismrr) {
int rix;
rix = ath_tx_findrix(sc, params->ibp_rate1);
bf->bf_state.bfs_rc[1].rix = rix;
bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
rix = ath_tx_findrix(sc, params->ibp_rate2);
bf->bf_state.bfs_rc[2].rix = rix;
bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
rix = ath_tx_findrix(sc, params->ibp_rate3);
bf->bf_state.bfs_rc[3].rix = rix;
bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
}
/*
* All the required rate control decisions have been made;
* fill in the rc flags.
*/
ath_tx_rate_fill_rcflags(sc, bf);
/* NB: no buffered multicast in power save support */
/*
* If we're overiding the ADDBA destination, dump directly
* into the hardware queue, right after any pending
* frames to that node are.
*/
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
__func__, do_override);
#if 1
/*
* Put addba frames in the right place in the right TID/HWQ.
*/
if (do_override) {
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
/*
* XXX if it's addba frames, should we be leaking
* them out via the frame leak method?
* XXX for now let's not risk it; but we may wish
* to investigate this later.
*/
ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
} else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0,
&queue_to_head)) {
/* Queue to software queue */
ath_tx_swq(sc, ni, sc->sc_ac2q[pri], queue_to_head, bf);
} else {
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
}
#else
/* Direct-dispatch to the hardware */
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
/*
* Update the current leak count if
* we're leaking frames; and set the
* MORE flag as appropriate.
*/
ath_tx_leak_count_update(sc, tid, bf);
ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
#endif
return 0;
}
/*
* Send a raw frame.
*
* This can be called by net80211.
*/
int
ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_softc;
struct ath_buf *bf;
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
int error = 0;
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt > 0) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: sc_inreset_cnt > 0; bailing\n", __func__);
error = EIO;
ATH_PCU_UNLOCK(sc);
goto badbad;
}
sc->sc_txstart_cnt++;
ATH_PCU_UNLOCK(sc);
/* Wake the hardware up already */
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
ATH_TX_LOCK(sc);
if (!sc->sc_running || sc->sc_invalid) {
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, r/i: %d/%d",
__func__, sc->sc_running, sc->sc_invalid);
m_freem(m);
error = ENETDOWN;
goto bad;
}
/*
* Enforce how deep the multicast queue can grow.
*
* XXX duplicated in ath_tx_start().
*/
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth
> sc->sc_txq_mcastq_maxdepth) {
sc->sc_stats.ast_tx_mcastq_overflow++;
error = ENOBUFS;
}
if (error != 0) {
m_freem(m);
goto bad;
}
}
/*
* Grab a TX buffer and associated resources.
*/
bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
if (bf == NULL) {
sc->sc_stats.ast_tx_nobuf++;
m_freem(m);
error = ENOBUFS;
goto bad;
}
ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n",
m, params, bf);
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
if (ath_tx_start(sc, ni, bf, m)) {
error = EIO; /* XXX */
goto bad2;
}
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
if (ath_tx_raw_start(sc, ni, bf, m, params)) {
error = EIO; /* XXX */
goto bad2;
}
}
sc->sc_wd_timer = 5;
sc->sc_stats.ast_tx_raw++;
/*
* Update the TIM - if there's anything queued to the
* software queue and power save is enabled, we should
* set the TIM.
*/
ath_tx_update_tim(sc, ni, 1);
ATH_TX_UNLOCK(sc);
ATH_PCU_LOCK(sc);
sc->sc_txstart_cnt--;
ATH_PCU_UNLOCK(sc);
/* Put the hardware back to sleep if required */
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
return 0;
bad2:
ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, "
"bf=%p",
m,
params,
bf);
ATH_TXBUF_LOCK(sc);
ath_returnbuf_head(sc, bf);
ATH_TXBUF_UNLOCK(sc);
bad:
ATH_TX_UNLOCK(sc);
ATH_PCU_LOCK(sc);
sc->sc_txstart_cnt--;
ATH_PCU_UNLOCK(sc);
/* Put the hardware back to sleep if required */
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
badbad:
ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p",
m, params);
sc->sc_stats.ast_tx_raw_fail++;
return error;
}
/* Some helper functions */
/*
* ADDBA (and potentially others) need to be placed in the same
* hardware queue as the TID/node it's relating to. This is so
* it goes out after any pending non-aggregate frames to the
* same node/TID.
*
* If this isn't done, the ADDBA can go out before the frames
* queued in hardware. Even though these frames have a sequence
* number -earlier- than the ADDBA can be transmitted (but
* no frames whose sequence numbers are after the ADDBA should
* be!) they'll arrive after the ADDBA - and the receiving end
* will simply drop them as being out of the BAW.
*
* The frames can't be appended to the TID software queue - it'll
* never be sent out. So these frames have to be directly
* dispatched to the hardware, rather than queued in software.
* So if this function returns true, the TXQ has to be
* overridden and it has to be directly dispatched.
*
* It's a dirty hack, but someone's gotta do it.
*/
/*
* XXX doesn't belong here!
*/
static int
ieee80211_is_action(struct ieee80211_frame *wh)
{
/* Type: Management frame? */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_MGT)
return 0;
/* Subtype: Action frame? */
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
IEEE80211_FC0_SUBTYPE_ACTION)
return 0;
return 1;
}
#define MS(_v, _f) (((_v) & _f) >> _f##_S)
/*
* Return an alternate TID for ADDBA request frames.
*
* Yes, this likely should be done in the net80211 layer.
*/
static int
ath_tx_action_frame_override_queue(struct ath_softc *sc,
struct ieee80211_node *ni,
struct mbuf *m0, int *tid)
{
struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
struct ieee80211_action_ba_addbarequest *ia;
uint8_t *frm;
uint16_t baparamset;
/* Not action frame? Bail */
if (! ieee80211_is_action(wh))
return 0;
/* XXX Not needed for frames we send? */
#if 0
/* Correct length? */
if (! ieee80211_parse_action(ni, m))
return 0;
#endif
/* Extract out action frame */
frm = (u_int8_t *)&wh[1];
ia = (struct ieee80211_action_ba_addbarequest *) frm;
/* Not ADDBA? Bail */
if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
return 0;
if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
return 0;
/* Extract TID, return it */
baparamset = le16toh(ia->rq_baparamset);
*tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
return 1;
}
#undef MS
/* Per-node software queue operations */
/*
* Add the current packet to the given BAW.
* It is assumed that the current packet
*
* + fits inside the BAW;
* + already has had a sequence number allocated.
*
* Since the BAW status may be modified by both the ath task and
* the net80211/ifnet contexts, the TID must be locked.
*/
void
ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, struct ath_buf *bf)
{
int index, cindex;
struct ieee80211_tx_ampdu *tap;
ATH_TX_LOCK_ASSERT(sc);
if (bf->bf_state.bfs_isretried)
return;
tap = ath_tx_get_tx_tid(an, tid->tid);
if (! bf->bf_state.bfs_dobaw) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: dobaw=0, seqno=%d, window %d:%d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno),
tap->txa_start, tap->txa_wnd);
}
if (bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: re-added? tid=%d, seqno %d; window %d:%d; "
"baw head=%d tail=%d\n",
__func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
tap->txa_start, tap->txa_wnd, tid->baw_head,
tid->baw_tail);
/*
* Verify that the given sequence number is not outside of the
* BAW. Complain loudly if that's the case.
*/
if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
SEQNO(bf->bf_state.bfs_seqno))) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; "
"baw head=%d tail=%d\n",
__func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
tap->txa_start, tap->txa_wnd, tid->baw_head,
tid->baw_tail);
}
/*
* ni->ni_txseqs[] is the currently allocated seqno.
* the txa state contains the current baw start.
*/
index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
"baw head=%d tail=%d\n",
__func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
tid->baw_tail);
#if 0
assert(tid->tx_buf[cindex] == NULL);
#endif
if (tid->tx_buf[cindex] != NULL) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: ba packet dup (index=%d, cindex=%d, "
"head=%d, tail=%d)\n",
__func__, index, cindex, tid->baw_head, tid->baw_tail);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
__func__,
tid->tx_buf[cindex],
SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
bf,
SEQNO(bf->bf_state.bfs_seqno)
);
}
tid->tx_buf[cindex] = bf;
if (index >= ((tid->baw_tail - tid->baw_head) &
(ATH_TID_MAX_BUFS - 1))) {
tid->baw_tail = cindex;
INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
}
}
/*
* Flip the BAW buffer entry over from the existing one to the new one.
*
* When software retransmitting a (sub-)frame, it is entirely possible that
* the frame ath_buf is marked as BUSY and can't be immediately reused.
* In that instance the buffer is cloned and the new buffer is used for
* retransmit. We thus need to update the ath_buf slot in the BAW buf
* tracking array to maintain consistency.
*/
static void
ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
{
int index, cindex;
struct ieee80211_tx_ampdu *tap;
int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
ATH_TX_LOCK_ASSERT(sc);
tap = ath_tx_get_tx_tid(an, tid->tid);
index = ATH_BA_INDEX(tap->txa_start, seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
/*
* Just warn for now; if it happens then we should find out
* about it. It's highly likely the aggregation session will
* soon hang.
*/
if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: retransmitted buffer"
" has mismatching seqno's, BA session may hang.\n",
__func__);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: old seqno=%d, new_seqno=%d\n", __func__,
old_bf->bf_state.bfs_seqno, new_bf->bf_state.bfs_seqno);
}
if (tid->tx_buf[cindex] != old_bf) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: ath_buf pointer incorrect; "
" has m BA session may hang.\n", __func__);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: old bf=%p, new bf=%p\n", __func__, old_bf, new_bf);
}
tid->tx_buf[cindex] = new_bf;
}
/*
* seq_start - left edge of BAW
* seq_next - current/next sequence number to allocate
*
* Since the BAW status may be modified by both the ath task and
* the net80211/ifnet contexts, the TID must be locked.
*/
static void
ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, const struct ath_buf *bf)
{
int index, cindex;
struct ieee80211_tx_ampdu *tap;
int seqno = SEQNO(bf->bf_state.bfs_seqno);
ATH_TX_LOCK_ASSERT(sc);
tap = ath_tx_get_tx_tid(an, tid->tid);
index = ATH_BA_INDEX(tap->txa_start, seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
"baw head=%d, tail=%d\n",
__func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
cindex, tid->baw_head, tid->baw_tail);
/*
* If this occurs then we have a big problem - something else
* has slid tap->txa_start along without updating the BAW
* tracking start/end pointers. Thus the TX BAW state is now
* completely busted.
*
* But for now, since I haven't yet fixed TDMA and buffer cloning,
* it's quite possible that a cloned buffer is making its way
* here and causing it to fire off. Disable TDMA for now.
*/
if (tid->tx_buf[cindex] != bf) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
__func__, bf, SEQNO(bf->bf_state.bfs_seqno),
tid->tx_buf[cindex],
(tid->tx_buf[cindex] != NULL) ?
SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno) : -1);
}
tid->tx_buf[cindex] = NULL;
while (tid->baw_head != tid->baw_tail &&
!tid->tx_buf[tid->baw_head]) {
INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
INCR(tid->baw_head, ATH_TID_MAX_BUFS);
}
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: tid=%d: baw is now %d:%d, baw head=%d\n",
__func__, tid->tid, tap->txa_start, tap->txa_wnd, tid->baw_head);
}
static void
ath_tx_leak_count_update(struct ath_softc *sc, struct ath_tid *tid,
struct ath_buf *bf)
{
struct ieee80211_frame *wh;
ATH_TX_LOCK_ASSERT(sc);
if (tid->an->an_leak_count > 0) {
wh = mtod(bf->bf_m, struct ieee80211_frame *);
/*
* Update MORE based on the software/net80211 queue states.
*/
if ((tid->an->an_stack_psq > 0)
|| (tid->an->an_swq_depth > 0))
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
else
wh->i_fc[1] &= ~IEEE80211_FC1_MORE_DATA;
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: leak count = %d, psq=%d, swq=%d, MORE=%d\n",
__func__,
tid->an->an_node.ni_macaddr,
":",
tid->an->an_leak_count,
tid->an->an_stack_psq,
tid->an->an_swq_depth,
!! (wh->i_fc[1] & IEEE80211_FC1_MORE_DATA));
/*
* Re-sync the underlying buffer.
*/
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
BUS_DMASYNC_PREWRITE);
tid->an->an_leak_count --;
}
}
static int
ath_tx_tid_can_tx_or_sched(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TX_LOCK_ASSERT(sc);
if (tid->an->an_leak_count > 0) {
return (1);
}
if (tid->paused)
return (0);
return (1);
}
/*
* Mark the current node/TID as ready to TX.
*
* This is done to make it easy for the software scheduler to
* find which nodes have data to send.
*
* The TXQ lock must be held.
*/
void
ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
{
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
ATH_TX_LOCK_ASSERT(sc);
/*
* If we are leaking out a frame to this destination
* for PS-POLL, ensure that we allow scheduling to
* occur.
*/
if (! ath_tx_tid_can_tx_or_sched(sc, tid))
return; /* paused, can't schedule yet */
if (tid->sched)
return; /* already scheduled */
tid->sched = 1;
#if 0
/*
* If this is a sleeping node we're leaking to, given
* it a higher priority. This is so bad for QoS it hurts.
*/
if (tid->an->an_leak_count) {
TAILQ_INSERT_HEAD(&txq->axq_tidq, tid, axq_qelem);
} else {
TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
}
#endif
/*
* We can't do the above - it'll confuse the TXQ software
* scheduler which will keep checking the _head_ TID
* in the list to see if it has traffic. If we queue
* a TID to the head of the list and it doesn't transmit,
* we'll check it again.
*
* So, get the rest of this leaking frames support working
* and reliable first and _then_ optimise it so they're
* pushed out in front of any other pending software
* queued nodes.
*/
TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
}
/*
* Mark the current node as no longer needing to be polled for
* TX packets.
*
* The TXQ lock must be held.
*/
static void
ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
{
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
ATH_TX_LOCK_ASSERT(sc);
if (tid->sched == 0)
return;
tid->sched = 0;
TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
}
/*
* Assign a sequence number manually to the given frame.
*
* This should only be called for A-MPDU TX frames.
*
* Note: for group addressed frames, the sequence number
* should be from NONQOS_TID, and net80211 should have
* already assigned it for us.
*/
static ieee80211_seq
ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_buf *bf, struct mbuf *m0)
{
struct ieee80211_frame *wh;
int tid;
ieee80211_seq seqno;
uint8_t subtype;
wh = mtod(m0, struct ieee80211_frame *);
tid = ieee80211_gettid(wh);
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, qos has seq=%d\n",
__func__, tid, IEEE80211_QOS_HAS_SEQ(wh));
/* XXX Is it a control frame? Ignore */
/* Does the packet require a sequence number? */
if (! IEEE80211_QOS_HAS_SEQ(wh))
return -1;
ATH_TX_LOCK_ASSERT(sc);
/*
* Is it a QOS NULL Data frame? Give it a sequence number from
* the default TID (IEEE80211_NONQOS_TID.)
*
* The RX path of everything I've looked at doesn't include the NULL
* data frame sequence number in the aggregation state updates, so
* assigning it a sequence number there will cause a BAW hole on the
* RX side.
*/
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
/* XXX no locking for this TID? This is a bit of a problem. */
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/*
* group addressed frames get a sequence number from
* a different sequence number space.
*/
seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
} else {
/* Manually assign sequence number */
seqno = ni->ni_txseqs[tid];
INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
}
*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
M_SEQNO_SET(m0, seqno);
/* Return so caller can do something with it if needed */
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: -> subtype=0x%x, tid=%d, seqno=%d\n",
__func__, subtype, tid, seqno);
return seqno;
}
/*
* Attempt to direct dispatch an aggregate frame to hardware.
* If the frame is out of BAW, queue.
* Otherwise, schedule it as a single frame.
*/
static void
ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an,
struct ath_txq *txq, struct ath_buf *bf)
{
struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
struct ieee80211_tx_ampdu *tap;
ATH_TX_LOCK_ASSERT(sc);
tap = ath_tx_get_tx_tid(an, tid->tid);
/* paused? queue */
if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
ATH_TID_INSERT_HEAD(tid, bf, bf_list);
/* XXX don't sched - we're paused! */
return;
}
/* outside baw? queue */
if (bf->bf_state.bfs_dobaw &&
(! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
SEQNO(bf->bf_state.bfs_seqno)))) {
ATH_TID_INSERT_HEAD(tid, bf, bf_list);
ath_tx_tid_sched(sc, tid);
return;
}
/*
* This is a temporary check and should be removed once
* all the relevant code paths have been fixed.
*
* During aggregate retries, it's possible that the head
* frame will fail (which has the bfs_aggr and bfs_nframes
* fields set for said aggregate) and will be retried as
* a single frame. In this instance, the values should
* be reset or the completion code will get upset with you.
*/
if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: bfs_aggr=%d, bfs_nframes=%d\n", __func__,
bf->bf_state.bfs_aggr, bf->bf_state.bfs_nframes);
bf->bf_state.bfs_aggr = 0;
bf->bf_state.bfs_nframes = 1;
}
/* Update CLRDMASK just before this frame is queued */
ath_tx_update_clrdmask(sc, tid, bf);
/* Direct dispatch to hardware */
ath_tx_do_ratelookup(sc, bf);
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
ath_tx_setds(sc, bf);
/* Statistics */
sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
/* Track per-TID hardware queue depth correctly */
tid->hwq_depth++;
/* Add to BAW */
if (bf->bf_state.bfs_dobaw) {
ath_tx_addto_baw(sc, an, tid, bf);
bf->bf_state.bfs_addedbaw = 1;
}
/* Set completion handler, multi-frame aggregate or not */
bf->bf_comp = ath_tx_aggr_comp;
/*
* Update the current leak count if
* we're leaking frames; and set the
* MORE flag as appropriate.
*/
ath_tx_leak_count_update(sc, tid, bf);
/* Hand off to hardware */
ath_tx_handoff(sc, txq, bf);
}
/*
* Attempt to send the packet.
* If the queue isn't busy, direct-dispatch.
* If the queue is busy enough, queue the given packet on the
* relevant software queue.
*/
void
ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_txq *txq, int queue_to_head, struct ath_buf *bf)
{
struct ath_node *an = ATH_NODE(ni);
struct ieee80211_frame *wh;
struct ath_tid *atid;
int pri, tid;
struct mbuf *m0 = bf->bf_m;
ATH_TX_LOCK_ASSERT(sc);
/* Fetch the TID - non-QoS frames get assigned to TID 16 */
wh = mtod(m0, struct ieee80211_frame *);
pri = ath_tx_getac(sc, m0);
tid = ath_tx_gettid(sc, m0);
atid = &an->an_tid[tid];
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
__func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
/* Set local packet state, used to queue packets to hardware */
/* XXX potentially duplicate info, re-check */
bf->bf_state.bfs_tid = tid;
bf->bf_state.bfs_tx_queue = txq->axq_qnum;
bf->bf_state.bfs_pri = pri;
/*
* If the hardware queue isn't busy, queue it directly.
* If the hardware queue is busy, queue it.
* If the TID is paused or the traffic it outside BAW, software
* queue it.
*
* If the node is in power-save and we're leaking a frame,
* leak a single frame.
*/
if (! ath_tx_tid_can_tx_or_sched(sc, atid)) {
/* TID is paused, queue */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__);
/*
* If the caller requested that it be sent at a high
* priority, queue it at the head of the list.
*/
if (queue_to_head)
ATH_TID_INSERT_HEAD(atid, bf, bf_list);
else
ATH_TID_INSERT_TAIL(atid, bf, bf_list);
} else if (ath_tx_ampdu_pending(sc, an, tid)) {
/* AMPDU pending; queue */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__);
ATH_TID_INSERT_TAIL(atid, bf, bf_list);
/* XXX sched? */
} else if (ath_tx_ampdu_running(sc, an, tid)) {
/*
* AMPDU running, queue single-frame if the hardware queue
* isn't busy.
*
* If the hardware queue is busy, sending an aggregate frame
* then just hold off so we can queue more aggregate frames.
*
* Otherwise we may end up with single frames leaking through
* because we are dispatching them too quickly.
*
* TODO: maybe we should treat this as two policies - minimise
* latency, or maximise throughput. Then for BE/BK we can
* maximise throughput, and VO/VI (if AMPDU is enabled!)
* minimise latency.
*/
/*
* Always queue the frame to the tail of the list.
*/
ATH_TID_INSERT_TAIL(atid, bf, bf_list);
/*
* If the hardware queue isn't busy, direct dispatch
* the head frame in the list.
*
* Note: if we're say, configured to do ADDBA but not A-MPDU
* then maybe we want to still queue two non-aggregate frames
* to the hardware. Again with the per-TID policy
* configuration..)
*
* Otherwise, schedule the TID.
*/
/* XXX TXQ locking */
if (txq->axq_depth + txq->fifo.axq_depth == 0) {
bf = ATH_TID_FIRST(atid);
ATH_TID_REMOVE(atid, bf, bf_list);
/*
* Ensure it's definitely treated as a non-AMPDU
* frame - this information may have been left
* over from a previous attempt.
*/
bf->bf_state.bfs_aggr = 0;
bf->bf_state.bfs_nframes = 1;
/* Queue to the hardware */
ath_tx_xmit_aggr(sc, an, txq, bf);
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: xmit_aggr\n",
__func__);
} else {
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: ampdu; swq'ing\n",
__func__);
ath_tx_tid_sched(sc, atid);
}
/*
* If we're not doing A-MPDU, be prepared to direct dispatch
* up to both limits if possible. This particular corner
* case may end up with packet starvation between aggregate
* traffic and non-aggregate traffic: we want to ensure
* that non-aggregate stations get a few frames queued to the
* hardware before the aggregate station(s) get their chance.
*
* So if you only ever see a couple of frames direct dispatched
* to the hardware from a non-AMPDU client, check both here
* and in the software queue dispatcher to ensure that those
* non-AMPDU stations get a fair chance to transmit.
*/
/* XXX TXQ locking */
} else if ((txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit_nonaggr) &&
(txq->axq_aggr_depth < sc->sc_hwq_limit_aggr)) {
/* AMPDU not running, attempt direct dispatch */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__);
/* See if clrdmask needs to be set */
ath_tx_update_clrdmask(sc, atid, bf);
/*
* Update the current leak count if
* we're leaking frames; and set the
* MORE flag as appropriate.
*/
ath_tx_leak_count_update(sc, atid, bf);
/*
* Dispatch the frame.
*/
ath_tx_xmit_normal(sc, txq, bf);
} else {
/* Busy; queue */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__);
ATH_TID_INSERT_TAIL(atid, bf, bf_list);
ath_tx_tid_sched(sc, atid);
}
}
/*
* Only set the clrdmask bit if none of the nodes are currently
* filtered.
*
* XXX TODO: go through all the callers and check to see
* which are being called in the context of looping over all
* TIDs (eg, if all tids are being paused, resumed, etc.)
* That'll avoid O(n^2) complexity here.
*/
static void
ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an)
{
int i;
ATH_TX_LOCK_ASSERT(sc);
for (i = 0; i < IEEE80211_TID_SIZE; i++) {
if (an->an_tid[i].isfiltered == 1)
return;
}
an->clrdmask = 1;
}
/*
* Configure the per-TID node state.
*
* This likely belongs in if_ath_node.c but I can't think of anywhere
* else to put it just yet.
*
* This sets up the SLISTs and the mutex as appropriate.
*/
void
ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
{
int i, j;
struct ath_tid *atid;
for (i = 0; i < IEEE80211_TID_SIZE; i++) {
atid = &an->an_tid[i];
/* XXX now with this bzer(), is the field 0'ing needed? */
bzero(atid, sizeof(*atid));
TAILQ_INIT(&atid->tid_q);
TAILQ_INIT(&atid->filtq.tid_q);
atid->tid = i;
atid->an = an;
for (j = 0; j < ATH_TID_MAX_BUFS; j++)
atid->tx_buf[j] = NULL;
atid->baw_head = atid->baw_tail = 0;
atid->paused = 0;
atid->sched = 0;
atid->hwq_depth = 0;
atid->cleanup_inprogress = 0;
if (i == IEEE80211_NONQOS_TID)
atid->ac = ATH_NONQOS_TID_AC;
else
atid->ac = TID_TO_WME_AC(i);
}
an->clrdmask = 1; /* Always start by setting this bit */
}
/*
* Pause the current TID. This stops packets from being transmitted
* on it.
*
* Since this is also called from upper layers as well as the driver,
* it will get the TID lock.
*/
static void
ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TX_LOCK_ASSERT(sc);
tid->paused++;
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: [%6D]: tid=%d, paused = %d\n",
__func__,
tid->an->an_node.ni_macaddr, ":",
tid->tid,
tid->paused);
}
/*
* Unpause the current TID, and schedule it if needed.
*/
static void
ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TX_LOCK_ASSERT(sc);
/*
* There's some odd places where ath_tx_tid_resume() is called
* when it shouldn't be; this works around that particular issue
* until it's actually resolved.
*/
if (tid->paused == 0) {
device_printf(sc->sc_dev,
"%s: [%6D]: tid=%d, paused=0?\n",
__func__,
tid->an->an_node.ni_macaddr, ":",
tid->tid);
} else {
tid->paused--;
}
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: [%6D]: tid=%d, unpaused = %d\n",
__func__,
tid->an->an_node.ni_macaddr, ":",
tid->tid,
tid->paused);
if (tid->paused)
return;
/*
* Override the clrdmask configuration for the next frame
* from this TID, just to get the ball rolling.
*/
ath_tx_set_clrdmask(sc, tid->an);
if (tid->axq_depth == 0)
return;
/* XXX isfiltered shouldn't ever be 0 at this point */
if (tid->isfiltered == 1) {
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: filtered?!\n",
__func__);
return;
}
ath_tx_tid_sched(sc, tid);
/*
* Queue the software TX scheduler.
*/
ath_tx_swq_kick(sc);
}
/*
* Add the given ath_buf to the TID filtered frame list.
* This requires the TID be filtered.
*/
static void
ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid,
struct ath_buf *bf)
{
ATH_TX_LOCK_ASSERT(sc);
if (!tid->isfiltered)
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: not filtered?!\n",
__func__);
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf);
/* Set the retry bit and bump the retry counter */
ath_tx_set_retry(sc, bf);
sc->sc_stats.ast_tx_swfiltered++;
ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list);
}
/*
* Handle a completed filtered frame from the given TID.
* This just enables/pauses the filtered frame state if required
* and appends the filtered frame to the filtered queue.
*/
static void
ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid,
struct ath_buf *bf)
{
ATH_TX_LOCK_ASSERT(sc);
if (! tid->isfiltered) {
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d; filter transition\n",
__func__, tid->tid);
tid->isfiltered = 1;
ath_tx_tid_pause(sc, tid);
}
/* Add the frame to the filter queue */
ath_tx_tid_filt_addbuf(sc, tid, bf);
}
/*
* Complete the filtered frame TX completion.
*
* If there are no more frames in the hardware queue, unpause/unfilter
* the TID if applicable. Otherwise we will wait for a node PS transition
* to unfilter.
*/
static void
ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid)
{
struct ath_buf *bf;
int do_resume = 0;
ATH_TX_LOCK_ASSERT(sc);
if (tid->hwq_depth != 0)
return;
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, hwq=0, transition back\n",
__func__, tid->tid);
if (tid->isfiltered == 1) {
tid->isfiltered = 0;
do_resume = 1;
}
/* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */
ath_tx_set_clrdmask(sc, tid->an);
/* XXX this is really quite inefficient */
while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) {
ATH_TID_FILT_REMOVE(tid, bf, bf_list);
ATH_TID_INSERT_HEAD(tid, bf, bf_list);
}
/* And only resume if we had paused before */
if (do_resume)
ath_tx_tid_resume(sc, tid);
}
/*
* Called when a single (aggregate or otherwise) frame is completed.
*
* Returns 0 if the buffer could be added to the filtered list
* (cloned or otherwise), 1 if the buffer couldn't be added to the
* filtered list (failed clone; expired retry) and the caller should
* free it and handle it like a failure (eg by sending a BAR.)
*
* since the buffer may be cloned, bf must be not touched after this
* if the return value is 0.
*/
static int
ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid,
struct ath_buf *bf)
{
struct ath_buf *nbf;
int retval;
ATH_TX_LOCK_ASSERT(sc);
/*
* Don't allow a filtered frame to live forever.
*/
if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
sc->sc_stats.ast_tx_swretrymax++;
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
"%s: bf=%p, seqno=%d, exceeded retries\n",
__func__,
bf,
SEQNO(bf->bf_state.bfs_seqno));
retval = 1; /* error */
goto finish;
}
/*
* A busy buffer can't be added to the retry list.
* It needs to be cloned.
*/
if (bf->bf_flags & ATH_BUF_BUSY) {
nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
"%s: busy buffer clone: %p -> %p\n",
__func__, bf, nbf);
} else {
nbf = bf;
}
if (nbf == NULL) {
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
"%s: busy buffer couldn't be cloned (%p)!\n",
__func__, bf);
retval = 1; /* error */
} else {
ath_tx_tid_filt_comp_buf(sc, tid, nbf);
retval = 0; /* ok */
}
finish:
ath_tx_tid_filt_comp_complete(sc, tid);
return (retval);
}
static void
ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid,
struct ath_buf *bf_first, ath_bufhead *bf_q)
{
struct ath_buf *bf, *bf_next, *nbf;
ATH_TX_LOCK_ASSERT(sc);
bf = bf_first;
while (bf) {
bf_next = bf->bf_next;
bf->bf_next = NULL; /* Remove it from the aggr list */
/*
* Don't allow a filtered frame to live forever.
*/
if (bf->bf_state.bfs_retries > SWMAX_RETRIES) {
sc->sc_stats.ast_tx_swretrymax++;
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
"%s: tid=%d, bf=%p, seqno=%d, exceeded retries\n",
__func__,
tid->tid,
bf,
SEQNO(bf->bf_state.bfs_seqno));
TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
goto next;
}
if (bf->bf_flags & ATH_BUF_BUSY) {
nbf = ath_tx_retry_clone(sc, tid->an, tid, bf);
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
"%s: tid=%d, busy buffer cloned: %p -> %p, seqno=%d\n",
__func__, tid->tid, bf, nbf, SEQNO(bf->bf_state.bfs_seqno));
} else {
nbf = bf;
}
/*
* If the buffer couldn't be cloned, add it to bf_q;
* the caller will free the buffer(s) as required.
*/
if (nbf == NULL) {
DPRINTF(sc, ATH_DEBUG_SW_TX_FILT,
"%s: tid=%d, buffer couldn't be cloned! (%p) seqno=%d\n",
__func__, tid->tid, bf, SEQNO(bf->bf_state.bfs_seqno));
TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
} else {
ath_tx_tid_filt_comp_buf(sc, tid, nbf);
}
next:
bf = bf_next;
}
ath_tx_tid_filt_comp_complete(sc, tid);
}
/*
* Suspend the queue because we need to TX a BAR.
*/
static void
ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TX_LOCK_ASSERT(sc);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: tid=%d, bar_wait=%d, bar_tx=%d, called\n",
__func__,
tid->tid,
tid->bar_wait,
tid->bar_tx);
/* We shouldn't be called when bar_tx is 1 */
if (tid->bar_tx) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: bar_tx is 1?!\n", __func__);
}
/* If we've already been called, just be patient. */
if (tid->bar_wait)
return;
/* Wait! */
tid->bar_wait = 1;
/* Only one pause, no matter how many frames fail */
ath_tx_tid_pause(sc, tid);
}
/*
* We've finished with BAR handling - either we succeeded or
* failed. Either way, unsuspend TX.
*/
static void
ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TX_LOCK_ASSERT(sc);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: %6D: TID=%d, called\n",
__func__,
tid->an->an_node.ni_macaddr,
":",
tid->tid);
if (tid->bar_tx == 0 || tid->bar_wait == 0) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
__func__, tid->an->an_node.ni_macaddr, ":",
tid->tid, tid->bar_tx, tid->bar_wait);
}
tid->bar_tx = tid->bar_wait = 0;
ath_tx_tid_resume(sc, tid);
}
/*
* Return whether we're ready to TX a BAR frame.
*
* Requires the TID lock be held.
*/
static int
ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
{
ATH_TX_LOCK_ASSERT(sc);
if (tid->bar_wait == 0 || tid->hwq_depth > 0)
return (0);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: %6D: TID=%d, bar ready\n",
__func__,
tid->an->an_node.ni_macaddr,
":",
tid->tid);
return (1);
}
/*
* Check whether the current TID is ready to have a BAR
* TXed and if so, do the TX.
*
* Since the TID/TXQ lock can't be held during a call to
* ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
* sending the BAR and locking it again.
*
* Eventually, the code to send the BAR should be broken out
* from this routine so the lock doesn't have to be reacquired
* just to be immediately dropped by the caller.
*/
static void
ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
{
struct ieee80211_tx_ampdu *tap;
ATH_TX_LOCK_ASSERT(sc);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: %6D: TID=%d, called\n",
__func__,
tid->an->an_node.ni_macaddr,
":",
tid->tid);
tap = ath_tx_get_tx_tid(tid->an, tid->tid);
/*
* This is an error condition!
*/
if (tid->bar_wait == 0 || tid->bar_tx == 1) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n",
__func__, tid->an->an_node.ni_macaddr, ":",
tid->tid, tid->bar_tx, tid->bar_wait);
return;
}
/* Don't do anything if we still have pending frames */
if (tid->hwq_depth > 0) {
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: %6D: TID=%d, hwq_depth=%d, waiting\n",
__func__,
tid->an->an_node.ni_macaddr,
":",
tid->tid,
tid->hwq_depth);
return;
}
/* We're now about to TX */
tid->bar_tx = 1;
/*
* Override the clrdmask configuration for the next frame,
* just to get the ball rolling.
*/
ath_tx_set_clrdmask(sc, tid->an);
/*
* Calculate new BAW left edge, now that all frames have either
* succeeded or failed.
*
* XXX verify this is _actually_ the valid value to begin at!
*/
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: %6D: TID=%d, new BAW left edge=%d\n",
__func__,
tid->an->an_node.ni_macaddr,
":",
tid->tid,
tap->txa_start);
/* Try sending the BAR frame */
/* We can't hold the lock here! */
ATH_TX_UNLOCK(sc);
if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
/* Success? Now we wait for notification that it's done */
ATH_TX_LOCK(sc);
return;
}
/* Failure? For now, warn loudly and continue */
ATH_TX_LOCK(sc);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: %6D: TID=%d, failed to TX BAR, continue!\n",
__func__, tid->an->an_node.ni_macaddr, ":",
tid->tid);
ath_tx_tid_bar_unsuspend(sc, tid);
}
static void
ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf)
{
ATH_TX_LOCK_ASSERT(sc);
/*
* If the current TID is running AMPDU, update
* the BAW.
*/
if (ath_tx_ampdu_running(sc, an, tid->tid) &&
bf->bf_state.bfs_dobaw) {
/*
* Only remove the frame from the BAW if it's
* been transmitted at least once; this means
* the frame was in the BAW to begin with.
*/
if (bf->bf_state.bfs_retries > 0) {
ath_tx_update_baw(sc, an, tid, bf);
bf->bf_state.bfs_dobaw = 0;
}
#if 0
/*
* This has become a non-fatal error now
*/
if (! bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
#endif
}
/* Strip it out of an aggregate list if it was in one */
bf->bf_next = NULL;
/* Insert on the free queue to be freed by the caller */
TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
}
static void
ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an,
const char *pfx, struct ath_tid *tid, struct ath_buf *bf)
{
struct ieee80211_node *ni = &an->an_node;
struct ath_txq *txq;
struct ieee80211_tx_ampdu *tap;
txq = sc->sc_ac2q[tid->ac];
tap = ath_tx_get_tx_tid(an, tid->tid);
DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
"%s: %s: %6D: bf=%p: addbaw=%d, dobaw=%d, "
"seqno=%d, retry=%d\n",
__func__,
pfx,
ni->ni_macaddr,
":",
bf,
bf->bf_state.bfs_addedbaw,
bf->bf_state.bfs_dobaw,
SEQNO(bf->bf_state.bfs_seqno),
bf->bf_state.bfs_retries);
DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
"%s: %s: %6D: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n",
__func__,
pfx,
ni->ni_macaddr,
":",
bf,
txq->axq_qnum,
txq->axq_depth,
txq->axq_aggr_depth);
DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
"%s: %s: %6D: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, "
"isfiltered=%d\n",
__func__,
pfx,
ni->ni_macaddr,
":",
bf,
tid->axq_depth,
tid->hwq_depth,
tid->bar_wait,
tid->isfiltered);
DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET,
"%s: %s: %6D: tid %d: "
"sched=%d, paused=%d, "
"incomp=%d, baw_head=%d, "
"baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
__func__,
pfx,
ni->ni_macaddr,
":",
tid->tid,
tid->sched, tid->paused,
tid->incomp, tid->baw_head,
tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
ni->ni_txseqs[tid->tid]);
/* XXX Dump the frame, see what it is? */
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
ieee80211_dump_pkt(ni->ni_ic,
mtod(bf->bf_m, const uint8_t *),
bf->bf_m->m_len, 0, -1);
}
/*
* Free any packets currently pending in the software TX queue.
*
* This will be called when a node is being deleted.
*
* It can also be called on an active node during an interface
* reset or state transition.
*
* (From Linux/reference):
*
* TODO: For frame(s) that are in the retry state, we will reuse the
* sequence number(s) without setting the retry bit. The
* alternative is to give up on these and BAR the receiver's window
* forward.
*/
static void
ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, ath_bufhead *bf_cq)
{
struct ath_buf *bf;
struct ieee80211_tx_ampdu *tap;
struct ieee80211_node *ni = &an->an_node;
int t;
tap = ath_tx_get_tx_tid(an, tid->tid);
ATH_TX_LOCK_ASSERT(sc);
/* Walk the queue, free frames */
t = 0;
for (;;) {
bf = ATH_TID_FIRST(tid);
if (bf == NULL) {
break;
}
if (t == 0) {
ath_tx_tid_drain_print(sc, an, "norm", tid, bf);
// t = 1;
}
ATH_TID_REMOVE(tid, bf, bf_list);
ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
}
/* And now, drain the filtered frame queue */
t = 0;
for (;;) {
bf = ATH_TID_FILT_FIRST(tid);
if (bf == NULL)
break;
if (t == 0) {
ath_tx_tid_drain_print(sc, an, "filt", tid, bf);
// t = 1;
}
ATH_TID_FILT_REMOVE(tid, bf, bf_list);
ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf);
}
/*
* Override the clrdmask configuration for the next frame
* in case there is some future transmission, just to get
* the ball rolling.
*
* This won't hurt things if the TID is about to be freed.
*/
ath_tx_set_clrdmask(sc, tid->an);
/*
* Now that it's completed, grab the TID lock and update
* the sequence number and BAW window.
* Because sequence numbers have been assigned to frames
* that haven't been sent yet, it's entirely possible
* we'll be called with some pending frames that have not
* been transmitted.
*
* The cleaner solution is to do the sequence number allocation
* when the packet is first transmitted - and thus the "retries"
* check above would be enough to update the BAW/seqno.
*/
/* But don't do it for non-QoS TIDs */
if (tap) {
#if 1
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: %6D: node %p: TID %d: sliding BAW left edge to %d\n",
__func__,
ni->ni_macaddr,
":",
an,
tid->tid,
tap->txa_start);
#endif
ni->ni_txseqs[tid->tid] = tap->txa_start;
tid->baw_tail = tid->baw_head;
}
}
/*
* Reset the TID state. This must be only called once the node has
* had its frames flushed from this TID, to ensure that no other
* pause / unpause logic can kick in.
*/
static void
ath_tx_tid_reset(struct ath_softc *sc, struct ath_tid *tid)
{
#if 0
tid->bar_wait = tid->bar_tx = tid->isfiltered = 0;
tid->paused = tid->sched = tid->addba_tx_pending = 0;
tid->incomp = tid->cleanup_inprogress = 0;
#endif
/*
* If we have a bar_wait set, we need to unpause the TID
* here. Otherwise once cleanup has finished, the TID won't
* have the right paused counter.
*
* XXX I'm not going through resume here - I don't want the
* node to be rescheuled just yet. This however should be
* methodized!
*/
if (tid->bar_wait) {
if (tid->paused > 0) {
tid->paused --;
}
}
/*
* XXX same with a currently filtered TID.
*
* Since this is being called during a flush, we assume that
* the filtered frame list is actually empty.
*
* XXX TODO: add in a check to ensure that the filtered queue
* depth is actually 0!
*/
if (tid->isfiltered) {
if (tid->paused > 0) {
tid->paused --;
}
}
/*
* Clear BAR, filtered frames, scheduled and ADDBA pending.
* The TID may be going through cleanup from the last association
* where things in the BAW are still in the hardware queue.
*/
tid->bar_wait = 0;
tid->bar_tx = 0;
tid->isfiltered = 0;
tid->sched = 0;
tid->addba_tx_pending = 0;
/*
* XXX TODO: it may just be enough to walk the HWQs and mark
* frames for that node as non-aggregate; or mark the ath_node
* with something that indicates that aggregation is no longer
* occurring. Then we can just toss the BAW complaints and
* do a complete hard reset of state here - no pause, no
* complete counter, etc.
*/
}
/*
* Flush all software queued packets for the given node.
*
* This occurs when a completion handler frees the last buffer
* for a node, and the node is thus freed. This causes the node
* to be cleaned up, which ends up calling ath_tx_node_flush.
*/
void
ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
{
int tid;
ath_bufhead bf_cq;
struct ath_buf *bf;
TAILQ_INIT(&bf_cq);
ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p",
&an->an_node);
ATH_TX_LOCK(sc);
DPRINTF(sc, ATH_DEBUG_NODE,
"%s: %6D: flush; is_powersave=%d, stack_psq=%d, tim=%d, "
"swq_depth=%d, clrdmask=%d, leak_count=%d\n",
__func__,
an->an_node.ni_macaddr,
":",
an->an_is_powersave,
an->an_stack_psq,
an->an_tim_set,
an->an_swq_depth,
an->clrdmask,
an->an_leak_count);
for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
struct ath_tid *atid = &an->an_tid[tid];
/* Free packets */
ath_tx_tid_drain(sc, an, atid, &bf_cq);
/* Remove this tid from the list of active tids */
ath_tx_tid_unsched(sc, atid);
/* Reset the per-TID pause, BAR, etc state */
ath_tx_tid_reset(sc, atid);
}
/*
* Clear global leak count
*/
an->an_leak_count = 0;
ATH_TX_UNLOCK(sc);
/* Handle completed frames */
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 0);
}
}
/*
* Drain all the software TXQs currently with traffic queued.
*/
void
ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_tid *tid;
ath_bufhead bf_cq;
struct ath_buf *bf;
TAILQ_INIT(&bf_cq);
ATH_TX_LOCK(sc);
/*
* Iterate over all active tids for the given txq,
* flushing and unsched'ing them
*/
while (! TAILQ_EMPTY(&txq->axq_tidq)) {
tid = TAILQ_FIRST(&txq->axq_tidq);
ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
ath_tx_tid_unsched(sc, tid);
}
ATH_TX_UNLOCK(sc);
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 0);
}
}
/*
* Handle completion of non-aggregate session frames.
*
* This (currently) doesn't implement software retransmission of
* non-aggregate frames!
*
* Software retransmission of non-aggregate frames needs to obey
* the strict sequence number ordering, and drop any frames that
* will fail this.
*
* For now, filtered frames and frame transmission will cause
* all kinds of issues. So we don't support them.
*
* So anyone queuing frames via ath_tx_normal_xmit() or
* ath_tx_hw_queue_norm() must override and set CLRDMASK.
*/
void
ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
/* The TID state is protected behind the TXQ lock */
ATH_TX_LOCK(sc);
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
__func__, bf, fail, atid->hwq_depth - 1);
atid->hwq_depth--;
#if 0
/*
* If the frame was filtered, stick it on the filter frame
* queue and complain about it. It shouldn't happen!
*/
if ((ts->ts_status & HAL_TXERR_FILT) ||
(ts->ts_status != 0 && atid->isfiltered)) {
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: isfiltered=%d, ts_status=%d: huh?\n",
__func__,
atid->isfiltered,
ts->ts_status);
ath_tx_tid_filt_comp_buf(sc, atid, bf);
}
#endif
if (atid->isfiltered)
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: filtered?!\n", __func__);
if (atid->hwq_depth < 0)
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
__func__, atid->hwq_depth);
/* If the TID is being cleaned up, track things */
/* XXX refactor! */
if (atid->cleanup_inprogress) {
atid->incomp--;
if (atid->incomp == 0) {
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: TID %d: cleaned up! resume!\n",
__func__, tid);
atid->cleanup_inprogress = 0;
ath_tx_tid_resume(sc, atid);
}
}
/*
* If the queue is filtered, potentially mark it as complete
* and reschedule it as needed.
*
* This is required as there may be a subsequent TX descriptor
* for this end-node that has CLRDMASK set, so it's quite possible
* that a filtered frame will be followed by a non-filtered
* (complete or otherwise) frame.
*
* XXX should we do this before we complete the frame?
*/
if (atid->isfiltered)
ath_tx_tid_filt_comp_complete(sc, atid);
ATH_TX_UNLOCK(sc);
/*
* punt to rate control if we're not being cleaned up
* during a hw queue drain and the frame wanted an ACK.
*/
if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
ts, bf->bf_state.bfs_pktlen,
1, (ts->ts_status == 0) ? 0 : 1);
ath_tx_default_comp(sc, bf, fail);
}
/*
* Handle cleanup of aggregate session packets that aren't
* an A-MPDU.
*
* There's no need to update the BAW here - the session is being
* torn down.
*/
static void
ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
__func__, tid, atid->incomp);
ATH_TX_LOCK(sc);
atid->incomp--;
/* XXX refactor! */
if (bf->bf_state.bfs_dobaw) {
ath_tx_update_baw(sc, an, atid, bf);
if (!bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
}
if (atid->incomp == 0) {
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: TID %d: cleaned up! resume!\n",
__func__, tid);
atid->cleanup_inprogress = 0;
ath_tx_tid_resume(sc, atid);
}
ATH_TX_UNLOCK(sc);
ath_tx_default_comp(sc, bf, 0);
}
/*
* This as it currently stands is a bit dumb. Ideally we'd just
* fail the frame the normal way and have it permanently fail
* via the normal aggregate completion path.
*/
static void
ath_tx_tid_cleanup_frame(struct ath_softc *sc, struct ath_node *an,
int tid, struct ath_buf *bf_head, ath_bufhead *bf_cq)
{
struct ath_tid *atid = &an->an_tid[tid];
struct ath_buf *bf, *bf_next;
ATH_TX_LOCK_ASSERT(sc);
/*
* Remove this frame from the queue.
*/
ATH_TID_REMOVE(atid, bf_head, bf_list);
/*
* Loop over all the frames in the aggregate.
*/
bf = bf_head;
while (bf != NULL) {
bf_next = bf->bf_next; /* next aggregate frame, or NULL */
/*
* If it's been added to the BAW we need to kick
* it out of the BAW before we continue.
*
* XXX if it's an aggregate, assert that it's in the
* BAW - we shouldn't have it be in an aggregate
* otherwise!
*/
if (bf->bf_state.bfs_addedbaw) {
ath_tx_update_baw(sc, an, atid, bf);
bf->bf_state.bfs_dobaw = 0;
}
/*
* Give it the default completion handler.
*/
bf->bf_comp = ath_tx_normal_comp;
bf->bf_next = NULL;
/*
* Add it to the list to free.
*/
TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
/*
* Now advance to the next frame in the aggregate.
*/
bf = bf_next;
}
}
/*
* Performs transmit side cleanup when TID changes from aggregated to
* unaggregated and during reassociation.
*
* For now, this just tosses everything from the TID software queue
* whether or not it has been retried and marks the TID as
* pending completion if there's anything for this TID queued to
* the hardware.
*
* The caller is responsible for pausing the TID and unpausing the
* TID if no cleanup was required. Otherwise the cleanup path will
* unpause the TID once the last hardware queued frame is completed.
*/
static void
ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid,
ath_bufhead *bf_cq)
{
struct ath_tid *atid = &an->an_tid[tid];
struct ath_buf *bf, *bf_next;
ATH_TX_LOCK_ASSERT(sc);
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: TID %d: called; inprogress=%d\n", __func__, tid,
atid->cleanup_inprogress);
/*
* Move the filtered frames to the TX queue, before
* we run off and discard/process things.
*/
/* XXX this is really quite inefficient */
while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) {
ATH_TID_FILT_REMOVE(atid, bf, bf_list);
ATH_TID_INSERT_HEAD(atid, bf, bf_list);
}
/*
* Update the frames in the software TX queue:
*
* + Discard retry frames in the queue
* + Fix the completion function to be non-aggregate
*/
bf = ATH_TID_FIRST(atid);
while (bf) {
/*
* Grab the next frame in the list, we may
* be fiddling with the list.
*/
bf_next = TAILQ_NEXT(bf, bf_list);
/*
* Free the frame and all subframes.
*/
ath_tx_tid_cleanup_frame(sc, an, tid, bf, bf_cq);
/*
* Next frame!
*/
bf = bf_next;
}
/*
* If there's anything in the hardware queue we wait
* for the TID HWQ to empty.
*/
if (atid->hwq_depth > 0) {
/*
* XXX how about we kill atid->incomp, and instead
* replace it with a macro that checks that atid->hwq_depth
* is 0?
*/
atid->incomp = atid->hwq_depth;
atid->cleanup_inprogress = 1;
}
if (atid->cleanup_inprogress)
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: TID %d: cleanup needed: %d packets\n",
__func__, tid, atid->incomp);
/* Owner now must free completed frames */
}
static struct ath_buf *
ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid, struct ath_buf *bf)
{
struct ath_buf *nbf;
int error;
/*
* Clone the buffer. This will handle the dma unmap and
* copy the node reference to the new buffer. If this
* works out, 'bf' will have no DMA mapping, no mbuf
* pointer and no node reference.
*/
nbf = ath_buf_clone(sc, bf);
#if 0
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: ATH_BUF_BUSY; cloning\n",
__func__);
#endif
if (nbf == NULL) {
/* Failed to clone */
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: failed to clone a busy buffer\n",
__func__);
return NULL;
}
/* Setup the dma for the new buffer */
error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
if (error != 0) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: failed to setup dma for clone\n",
__func__);
/*
* Put this at the head of the list, not tail;
* that way it doesn't interfere with the
* busy buffer logic (which uses the tail of
* the list.)
*/
ATH_TXBUF_LOCK(sc);
ath_returnbuf_head(sc, nbf);
ATH_TXBUF_UNLOCK(sc);
return NULL;
}
/* Update BAW if required, before we free the original buf */
if (bf->bf_state.bfs_dobaw)
ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
/* Free original buffer; return new buffer */
ath_freebuf(sc, bf);
return nbf;
}
/*
* Handle retrying an unaggregate frame in an aggregate
* session.
*
* If too many retries occur, pause the TID, wait for
* any further retransmits (as there's no reason why
* non-aggregate frames in an aggregate session are
* transmitted in-order; they just have to be in-BAW)
* and then queue a BAR.
*/
static void
ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
struct ieee80211_tx_ampdu *tap;
ATH_TX_LOCK(sc);
tap = ath_tx_get_tx_tid(an, tid);
/*
* If the buffer is marked as busy, we can't directly
* reuse it. Instead, try to clone the buffer.
* If the clone is successful, recycle the old buffer.
* If the clone is unsuccessful, set bfs_retries to max
* to force the next bit of code to free the buffer
* for us.
*/
if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
(bf->bf_flags & ATH_BUF_BUSY)) {
struct ath_buf *nbf;
nbf = ath_tx_retry_clone(sc, an, atid, bf);
if (nbf)
/* bf has been freed at this point */
bf = nbf;
else
bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
}
if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
"%s: exceeded retries; seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
sc->sc_stats.ast_tx_swretrymax++;
/* Update BAW anyway */
if (bf->bf_state.bfs_dobaw) {
ath_tx_update_baw(sc, an, atid, bf);
if (! bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
}
bf->bf_state.bfs_dobaw = 0;
/* Suspend the TX queue and get ready to send the BAR */
ath_tx_tid_bar_suspend(sc, atid);
/* Send the BAR if there are no other frames waiting */
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TX_UNLOCK(sc);
/* Free buffer, bf is free after this call */
ath_tx_default_comp(sc, bf, 0);
return;
}
/*
* This increments the retry counter as well as
* sets the retry flag in the ath_buf and packet
* body.
*/
ath_tx_set_retry(sc, bf);
sc->sc_stats.ast_tx_swretries++;
/*
* Insert this at the head of the queue, so it's
* retried before any current/subsequent frames.
*/
ATH_TID_INSERT_HEAD(atid, bf, bf_list);
ath_tx_tid_sched(sc, atid);
/* Send the BAR if there are no other frames waiting */
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TX_UNLOCK(sc);
}
/*
* Common code for aggregate excessive retry/subframe retry.
* If retrying, queues buffers to bf_q. If not, frees the
* buffers.
*
* XXX should unify this with ath_tx_aggr_retry_unaggr()
*/
static int
ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
ath_bufhead *bf_q)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
ATH_TX_LOCK_ASSERT(sc);
/* XXX clr11naggr should be done for all subframes */
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
/*
* If the buffer is marked as busy, we can't directly
* reuse it. Instead, try to clone the buffer.
* If the clone is successful, recycle the old buffer.
* If the clone is unsuccessful, set bfs_retries to max
* to force the next bit of code to free the buffer
* for us.
*/
if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
(bf->bf_flags & ATH_BUF_BUSY)) {
struct ath_buf *nbf;
nbf = ath_tx_retry_clone(sc, an, atid, bf);
if (nbf)
/* bf has been freed at this point */
bf = nbf;
else
bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
}
if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
sc->sc_stats.ast_tx_swretrymax++;
DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
"%s: max retries: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
ath_tx_update_baw(sc, an, atid, bf);
if (!bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
bf->bf_state.bfs_dobaw = 0;
return 1;
}
ath_tx_set_retry(sc, bf);
sc->sc_stats.ast_tx_swretries++;
bf->bf_next = NULL; /* Just to make sure */
/* Clear the aggregate state */
bf->bf_state.bfs_aggr = 0;
bf->bf_state.bfs_ndelim = 0; /* ??? needed? */
bf->bf_state.bfs_nframes = 1;
TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
return 0;
}
/*
* error pkt completion for an aggregate destination
*/
static void
ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
struct ath_tid *tid)
{
struct ieee80211_node *ni = bf_first->bf_node;
struct ath_node *an = ATH_NODE(ni);
struct ath_buf *bf_next, *bf;
ath_bufhead bf_q;
int drops = 0;
struct ieee80211_tx_ampdu *tap;
ath_bufhead bf_cq;
TAILQ_INIT(&bf_q);
TAILQ_INIT(&bf_cq);
/*
* Update rate control - all frames have failed.
*
* XXX use the length in the first frame in the series;
* XXX just so things are consistent for now.
*/
ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
&bf_first->bf_status.ds_txstat,
bf_first->bf_state.bfs_pktlen,
bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
ATH_TX_LOCK(sc);
tap = ath_tx_get_tx_tid(an, tid->tid);
sc->sc_stats.ast_tx_aggr_failall++;
/* Retry all subframes */
bf = bf_first;
while (bf) {
bf_next = bf->bf_next;
bf->bf_next = NULL; /* Remove it from the aggr list */
sc->sc_stats.ast_tx_aggr_fail++;
if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
drops++;
bf->bf_next = NULL;
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
}
bf = bf_next;
}
/* Prepend all frames to the beginning of the queue */
while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
TAILQ_REMOVE(&bf_q, bf, bf_list);
ATH_TID_INSERT_HEAD(tid, bf, bf_list);
}
/*
* Schedule the TID to be re-tried.
*/
ath_tx_tid_sched(sc, tid);
/*
* send bar if we dropped any frames
*
* Keep the txq lock held for now, as we need to ensure
* that ni_txseqs[] is consistent (as it's being updated
* in the ifnet TX context or raw TX context.)
*/
if (drops) {
/* Suspend the TX queue and get ready to send the BAR */
ath_tx_tid_bar_suspend(sc, tid);
}
/*
* Send BAR if required
*/
if (ath_tx_tid_bar_tx_ready(sc, tid))
ath_tx_tid_bar_tx(sc, tid);
ATH_TX_UNLOCK(sc);
/* Complete frames which errored out */
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 0);
}
}
/*
* Handle clean-up of packets from an aggregate list.
*
* There's no need to update the BAW here - the session is being
* torn down.
*/
static void
ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
{
struct ath_buf *bf, *bf_next;
struct ieee80211_node *ni = bf_first->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf_first->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
ATH_TX_LOCK(sc);
/* update incomp */
atid->incomp--;
/* Update the BAW */
bf = bf_first;
while (bf) {
/* XXX refactor! */
if (bf->bf_state.bfs_dobaw) {
ath_tx_update_baw(sc, an, atid, bf);
if (!bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
}
bf = bf->bf_next;
}
if (atid->incomp == 0) {
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: TID %d: cleaned up! resume!\n",
__func__, tid);
atid->cleanup_inprogress = 0;
ath_tx_tid_resume(sc, atid);
}
/* Send BAR if required */
/* XXX why would we send a BAR when transitioning to non-aggregation? */
/*
* XXX TODO: we should likely just tear down the BAR state here,
* rather than sending a BAR.
*/
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TX_UNLOCK(sc);
/* Handle frame completion as individual frames */
bf = bf_first;
while (bf) {
bf_next = bf->bf_next;
bf->bf_next = NULL;
ath_tx_default_comp(sc, bf, 1);
bf = bf_next;
}
}
/*
* Handle completion of an set of aggregate frames.
*
* Note: the completion handler is the last descriptor in the aggregate,
* not the last descriptor in the first frame.
*/
static void
ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
int fail)
{
//struct ath_desc *ds = bf->bf_lastds;
struct ieee80211_node *ni = bf_first->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf_first->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
struct ath_tx_status ts;
struct ieee80211_tx_ampdu *tap;
ath_bufhead bf_q;
ath_bufhead bf_cq;
int seq_st, tx_ok;
int hasba, isaggr;
uint32_t ba[2];
struct ath_buf *bf, *bf_next;
int ba_index;
int drops = 0;
int nframes = 0, nbad = 0, nf;
int pktlen;
/* XXX there's too much on the stack? */
struct ath_rc_series rc[ATH_RC_NUM];
int txseq;
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
__func__, atid->hwq_depth);
/*
* Take a copy; this may be needed -after- bf_first
* has been completed and freed.
*/
ts = bf_first->bf_status.ds_txstat;
TAILQ_INIT(&bf_q);
TAILQ_INIT(&bf_cq);
/* The TID state is kept behind the TXQ lock */
ATH_TX_LOCK(sc);
atid->hwq_depth--;
if (atid->hwq_depth < 0)
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: hwq_depth < 0: %d\n",
__func__, atid->hwq_depth);
/*
* If the TID is filtered, handle completing the filter
* transition before potentially kicking it to the cleanup
* function.
*
* XXX this is duplicate work, ew.
*/
if (atid->isfiltered)
ath_tx_tid_filt_comp_complete(sc, atid);
/*
* Punt cleanup to the relevant function, not our problem now
*/
if (atid->cleanup_inprogress) {
if (atid->isfiltered)
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: isfiltered=1, normal_comp?\n",
__func__);
ATH_TX_UNLOCK(sc);
ath_tx_comp_cleanup_aggr(sc, bf_first);
return;
}
/*
* If the frame is filtered, transition to filtered frame
* mode and add this to the filtered frame list.
*
* XXX TODO: figure out how this interoperates with
* BAR, pause and cleanup states.
*/
if ((ts.ts_status & HAL_TXERR_FILT) ||
(ts.ts_status != 0 && atid->isfiltered)) {
if (fail != 0)
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: isfiltered=1, fail=%d\n", __func__, fail);
ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq);
/* Remove from BAW */
TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) {
if (bf->bf_state.bfs_addedbaw)
drops++;
if (bf->bf_state.bfs_dobaw) {
ath_tx_update_baw(sc, an, atid, bf);
if (!bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: wasn't added: seqno %d\n",
__func__,
SEQNO(bf->bf_state.bfs_seqno));
}
bf->bf_state.bfs_dobaw = 0;
}
/*
* If any intermediate frames in the BAW were dropped when
* handling filtering things, send a BAR.
*/
if (drops)
ath_tx_tid_bar_suspend(sc, atid);
/*
* Finish up by sending a BAR if required and freeing
* the frames outside of the TX lock.
*/
goto finish_send_bar;
}
/*
* XXX for now, use the first frame in the aggregate for
* XXX rate control completion; it's at least consistent.
*/
pktlen = bf_first->bf_state.bfs_pktlen;
/*
* Handle errors first!
*
* Here, handle _any_ error as a "exceeded retries" error.
* Later on (when filtered frames are to be specially handled)
* it'll have to be expanded.
*/
#if 0
if (ts.ts_status & HAL_TXERR_XRETRY) {
#endif
if (ts.ts_status != 0) {
ATH_TX_UNLOCK(sc);
ath_tx_comp_aggr_error(sc, bf_first, atid);
return;
}
tap = ath_tx_get_tx_tid(an, tid);
/*
* extract starting sequence and block-ack bitmap
*/
/* XXX endian-ness of seq_st, ba? */
seq_st = ts.ts_seqnum;
hasba = !! (ts.ts_flags & HAL_TX_BA);
tx_ok = (ts.ts_status == 0);
isaggr = bf_first->bf_state.bfs_aggr;
ba[0] = ts.ts_ba_low;
ba[1] = ts.ts_ba_high;
/*
* Copy the TX completion status and the rate control
* series from the first descriptor, as it may be freed
* before the rate control code can get its grubby fingers
* into things.
*/
memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
"isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
__func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
isaggr, seq_st, hasba, ba[0], ba[1]);
/*
* The reference driver doesn't do this; it simply ignores
* this check in its entirety.
*
* I've seen this occur when using iperf to send traffic
* out tid 1 - the aggregate frames are all marked as TID 1,
* but the TXSTATUS has TID=0. So, let's just ignore this
* check.
*/
#if 0
/* Occasionally, the MAC sends a tx status for the wrong TID. */
if (tid != ts.ts_tid) {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: tid %d != hw tid %d\n",
__func__, tid, ts.ts_tid);
tx_ok = 0;
}
#endif
/* AR5416 BA bug; this requires an interface reset */
if (isaggr && tx_ok && (! hasba)) {
device_printf(sc->sc_dev,
"%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
"seq_st=%d\n",
__func__, hasba, tx_ok, isaggr, seq_st);
/* XXX TODO: schedule an interface reset */
#ifdef ATH_DEBUG
ath_printtxbuf(sc, bf_first,
sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0);
#endif
}
/*
* Walk the list of frames, figure out which ones were correctly
* sent and which weren't.
*/
bf = bf_first;
nf = bf_first->bf_state.bfs_nframes;
/* bf_first is going to be invalid once this list is walked */
bf_first = NULL;
/*
* Walk the list of completed frames and determine
* which need to be completed and which need to be
* retransmitted.
*
* For completed frames, the completion functions need
* to be called at the end of this function as the last
* node reference may free the node.
*
* Finally, since the TXQ lock can't be held during the
* completion callback (to avoid lock recursion),
* the completion calls have to be done outside of the
* lock.
*/
while (bf) {
nframes++;
ba_index = ATH_BA_INDEX(seq_st,
SEQNO(bf->bf_state.bfs_seqno));
bf_next = bf->bf_next;
bf->bf_next = NULL; /* Remove it from the aggr list */
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: checking bf=%p seqno=%d; ack=%d\n",
__func__, bf, SEQNO(bf->bf_state.bfs_seqno),
ATH_BA_ISSET(ba, ba_index));
if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
sc->sc_stats.ast_tx_aggr_ok++;
ath_tx_update_baw(sc, an, atid, bf);
bf->bf_state.bfs_dobaw = 0;
if (!bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
bf->bf_next = NULL;
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
} else {
sc->sc_stats.ast_tx_aggr_fail++;
if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
drops++;
bf->bf_next = NULL;
TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
}
nbad++;
}
bf = bf_next;
}
/*
* Now that the BAW updates have been done, unlock
*
* txseq is grabbed before the lock is released so we
* have a consistent view of what -was- in the BAW.
* Anything after this point will not yet have been
* TXed.
*/
txseq = tap->txa_start;
ATH_TX_UNLOCK(sc);
if (nframes != nf)
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: num frames seen=%d; bf nframes=%d\n",
__func__, nframes, nf);
/*
* Now we know how many frames were bad, call the rate
* control code.
*/
if (fail == 0)
ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes,
nbad);
/*
* send bar if we dropped any frames
*/
if (drops) {
/* Suspend the TX queue and get ready to send the BAR */
ATH_TX_LOCK(sc);
ath_tx_tid_bar_suspend(sc, atid);
ATH_TX_UNLOCK(sc);
}
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: txa_start now %d\n", __func__, tap->txa_start);
ATH_TX_LOCK(sc);
/* Prepend all frames to the beginning of the queue */
while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
TAILQ_REMOVE(&bf_q, bf, bf_list);
ATH_TID_INSERT_HEAD(atid, bf, bf_list);
}
/*
* Reschedule to grab some further frames.
*/
ath_tx_tid_sched(sc, atid);
/*
* If the queue is filtered, re-schedule as required.
*
* This is required as there may be a subsequent TX descriptor
* for this end-node that has CLRDMASK set, so it's quite possible
* that a filtered frame will be followed by a non-filtered
* (complete or otherwise) frame.
*
* XXX should we do this before we complete the frame?
*/
if (atid->isfiltered)
ath_tx_tid_filt_comp_complete(sc, atid);
finish_send_bar:
/*
* Send BAR if required
*/
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TX_UNLOCK(sc);
/* Do deferred completion */
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 0);
}
}
/*
* Handle completion of unaggregated frames in an ADDBA
* session.
*
* Fail is set to 1 if the entry is being freed via a call to
* ath_tx_draintxq().
*/
static void
ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
struct ieee80211_node *ni = bf->bf_node;
struct ath_node *an = ATH_NODE(ni);
int tid = bf->bf_state.bfs_tid;
struct ath_tid *atid = &an->an_tid[tid];
struct ath_tx_status ts;
int drops = 0;
/*
* Take a copy of this; filtering/cloning the frame may free the
* bf pointer.
*/
ts = bf->bf_status.ds_txstat;
/*
* Update rate control status here, before we possibly
* punt to retry or cleanup.
*
* Do it outside of the TXQ lock.
*/
if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
&bf->bf_status.ds_txstat,
bf->bf_state.bfs_pktlen,
1, (ts.ts_status == 0) ? 0 : 1);
/*
* This is called early so atid->hwq_depth can be tracked.
* This unfortunately means that it's released and regrabbed
* during retry and cleanup. That's rather inefficient.
*/
ATH_TX_LOCK(sc);
if (tid == IEEE80211_NONQOS_TID)
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16!\n", __func__);
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
__func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
SEQNO(bf->bf_state.bfs_seqno));
atid->hwq_depth--;
if (atid->hwq_depth < 0)
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n",
__func__, atid->hwq_depth);
/*
* If the TID is filtered, handle completing the filter
* transition before potentially kicking it to the cleanup
* function.
*/
if (atid->isfiltered)
ath_tx_tid_filt_comp_complete(sc, atid);
/*
* If a cleanup is in progress, punt to comp_cleanup;
* rather than handling it here. It's thus their
* responsibility to clean up, call the completion
* function in net80211, etc.
*/
if (atid->cleanup_inprogress) {
if (atid->isfiltered)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: isfiltered=1, normal_comp?\n",
__func__);
ATH_TX_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
__func__);
ath_tx_comp_cleanup_unaggr(sc, bf);
return;
}
/*
* XXX TODO: how does cleanup, BAR and filtered frame handling
* overlap?
*
* If the frame is filtered OR if it's any failure but
* the TID is filtered, the frame must be added to the
* filtered frame list.
*
* However - a busy buffer can't be added to the filtered
* list as it will end up being recycled without having
* been made available for the hardware.
*/
if ((ts.ts_status & HAL_TXERR_FILT) ||
(ts.ts_status != 0 && atid->isfiltered)) {
int freeframe;
if (fail != 0)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: isfiltered=1, fail=%d\n",
__func__, fail);
freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf);
/*
* If freeframe=0 then bf is no longer ours; don't
* touch it.
*/
if (freeframe) {
/* Remove from BAW */
if (bf->bf_state.bfs_addedbaw)
drops++;
if (bf->bf_state.bfs_dobaw) {
ath_tx_update_baw(sc, an, atid, bf);
if (!bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
}
bf->bf_state.bfs_dobaw = 0;
}
/*
* If the frame couldn't be filtered, treat it as a drop and
* prepare to send a BAR.
*/
if (freeframe && drops)
ath_tx_tid_bar_suspend(sc, atid);
/*
* Send BAR if required
*/
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TX_UNLOCK(sc);
/*
* If freeframe is set, then the frame couldn't be
* cloned and bf is still valid. Just complete/free it.
*/
if (freeframe)
ath_tx_default_comp(sc, bf, fail);
return;
}
/*
* Don't bother with the retry check if all frames
* are being failed (eg during queue deletion.)
*/
#if 0
if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
#endif
if (fail == 0 && ts.ts_status != 0) {
ATH_TX_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
__func__);
ath_tx_aggr_retry_unaggr(sc, bf);
return;
}
/* Success? Complete */
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
__func__, tid, SEQNO(bf->bf_state.bfs_seqno));
if (bf->bf_state.bfs_dobaw) {
ath_tx_update_baw(sc, an, atid, bf);
bf->bf_state.bfs_dobaw = 0;
if (!bf->bf_state.bfs_addedbaw)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: wasn't added: seqno %d\n",
__func__, SEQNO(bf->bf_state.bfs_seqno));
}
/*
* If the queue is filtered, re-schedule as required.
*
* This is required as there may be a subsequent TX descriptor
* for this end-node that has CLRDMASK set, so it's quite possible
* that a filtered frame will be followed by a non-filtered
* (complete or otherwise) frame.
*
* XXX should we do this before we complete the frame?
*/
if (atid->isfiltered)
ath_tx_tid_filt_comp_complete(sc, atid);
/*
* Send BAR if required
*/
if (ath_tx_tid_bar_tx_ready(sc, atid))
ath_tx_tid_bar_tx(sc, atid);
ATH_TX_UNLOCK(sc);
ath_tx_default_comp(sc, bf, fail);
/* bf is freed at this point */
}
void
ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
if (bf->bf_state.bfs_aggr)
ath_tx_aggr_comp_aggr(sc, bf, fail);
else
ath_tx_aggr_comp_unaggr(sc, bf, fail);
}
/*
* Schedule some packets from the given node/TID to the hardware.
*
* This is the aggregate version.
*/
void
ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid)
{
struct ath_buf *bf;
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
struct ieee80211_tx_ampdu *tap;
ATH_AGGR_STATUS status;
ath_bufhead bf_q;
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
ATH_TX_LOCK_ASSERT(sc);
/*
* XXX TODO: If we're called for a queue that we're leaking frames to,
* ensure we only leak one.
*/
tap = ath_tx_get_tx_tid(an, tid->tid);
if (tid->tid == IEEE80211_NONQOS_TID)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: called for TID=NONQOS_TID?\n", __func__);
for (;;) {
status = ATH_AGGR_DONE;
/*
* If the upper layer has paused the TID, don't
* queue any further packets.
*
* This can also occur from the completion task because
* of packet loss; but as its serialised with this code,
* it won't "appear" half way through queuing packets.
*/
if (! ath_tx_tid_can_tx_or_sched(sc, tid))
break;
bf = ATH_TID_FIRST(tid);
if (bf == NULL) {
break;
}
/*
* If the packet doesn't fall within the BAW (eg a NULL
* data frame), schedule it directly; continue.
*/
if (! bf->bf_state.bfs_dobaw) {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: non-baw packet\n",
__func__);
ATH_TID_REMOVE(tid, bf, bf_list);
if (bf->bf_state.bfs_nframes > 1)
DPRINTF(sc, ATH_DEBUG_SW_TX,
"%s: aggr=%d, nframes=%d\n",
__func__,
bf->bf_state.bfs_aggr,
bf->bf_state.bfs_nframes);
/*
* This shouldn't happen - such frames shouldn't
* ever have been queued as an aggregate in the
* first place. However, make sure the fields
* are correctly setup just to be totally sure.
*/
bf->bf_state.bfs_aggr = 0;
bf->bf_state.bfs_nframes = 1;
/* Update CLRDMASK just before this frame is queued */
ath_tx_update_clrdmask(sc, tid, bf);
ath_tx_do_ratelookup(sc, bf);
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
ath_tx_setds(sc, bf);
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
sc->sc_aggr_stats.aggr_nonbaw_pkt++;
/* Queue the packet; continue */
goto queuepkt;
}
TAILQ_INIT(&bf_q);
/*
* Do a rate control lookup on the first frame in the
* list. The rate control code needs that to occur
* before it can determine whether to TX.
* It's inaccurate because the rate control code doesn't
* really "do" aggregate lookups, so it only considers
* the size of the first frame.
*/
ath_tx_do_ratelookup(sc, bf);
bf->bf_state.bfs_rc[3].rix = 0;
bf->bf_state.bfs_rc[3].tries = 0;
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
status = ath_tx_form_aggr(sc, an, tid, &bf_q);
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: ath_tx_form_aggr() status=%d\n", __func__, status);
/*
* No frames to be picked up - out of BAW
*/
if (TAILQ_EMPTY(&bf_q))
break;
/*
* This assumes that the descriptor list in the ath_bufhead
* are already linked together via bf_next pointers.
*/
bf = TAILQ_FIRST(&bf_q);
if (status == ATH_AGGR_8K_LIMITED)
sc->sc_aggr_stats.aggr_rts_aggr_limited++;
/*
* If it's the only frame send as non-aggregate
* assume that ath_tx_form_aggr() has checked
* whether it's in the BAW and added it appropriately.
*/
if (bf->bf_state.bfs_nframes == 1) {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: single-frame aggregate\n", __func__);
/* Update CLRDMASK just before this frame is queued */
ath_tx_update_clrdmask(sc, tid, bf);
bf->bf_state.bfs_aggr = 0;
bf->bf_state.bfs_ndelim = 0;
ath_tx_setds(sc, bf);
ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
if (status == ATH_AGGR_BAW_CLOSED)
sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
else
sc->sc_aggr_stats.aggr_single_pkt++;
} else {
DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
"%s: multi-frame aggregate: %d frames, "
"length %d\n",
__func__, bf->bf_state.bfs_nframes,
bf->bf_state.bfs_al);
bf->bf_state.bfs_aggr = 1;
sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
sc->sc_aggr_stats.aggr_aggr_pkt++;
/* Update CLRDMASK just before this frame is queued */
ath_tx_update_clrdmask(sc, tid, bf);
/*
* Calculate the duration/protection as required.
*/
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
/*
* Update the rate and rtscts information based on the
* rate decision made by the rate control code;
* the first frame in the aggregate needs it.
*/
ath_tx_set_rtscts(sc, bf);
/*
* Setup the relevant descriptor fields
* for aggregation. The first descriptor
* already points to the rest in the chain.
*/
ath_tx_setds_11n(sc, bf);
}
queuepkt:
/* Set completion handler, multi-frame aggregate or not */
bf->bf_comp = ath_tx_aggr_comp;
if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16?\n", __func__);
/*
* Update leak count and frame config if were leaking frames.
*
* XXX TODO: it should update all frames in an aggregate
* correctly!
*/
ath_tx_leak_count_update(sc, tid, bf);
/* Punt to txq */
ath_tx_handoff(sc, txq, bf);
/* Track outstanding buffer count to hardware */
/* aggregates are "one" buffer */
tid->hwq_depth++;
/*
* Break out if ath_tx_form_aggr() indicated
* there can't be any further progress (eg BAW is full.)
* Checking for an empty txq is done above.
*
* XXX locking on txq here?
*/
/* XXX TXQ locking */
if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr ||
(status == ATH_AGGR_BAW_CLOSED ||
status == ATH_AGGR_LEAK_CLOSED))
break;
}
}
/*
* Schedule some packets from the given node/TID to the hardware.
*
* XXX TODO: this routine doesn't enforce the maximum TXQ depth.
* It just dumps frames into the TXQ. We should limit how deep
* the transmit queue can grow for frames dispatched to the given
* TXQ.
*
* To avoid locking issues, either we need to own the TXQ lock
* at this point, or we need to pass in the maximum frame count
* from the caller.
*/
void
ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
struct ath_tid *tid)
{
struct ath_buf *bf;
struct ath_txq *txq = sc->sc_ac2q[tid->ac];
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
__func__, an, tid->tid);
ATH_TX_LOCK_ASSERT(sc);
/* Check - is AMPDU pending or running? then print out something */
if (ath_tx_ampdu_pending(sc, an, tid->tid))
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu pending?\n",
__func__, tid->tid);
if (ath_tx_ampdu_running(sc, an, tid->tid))
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu running?\n",
__func__, tid->tid);
for (;;) {
/*
* If the upper layers have paused the TID, don't
* queue any further packets.
*
* XXX if we are leaking frames, make sure we decrement
* that counter _and_ we continue here.
*/
if (! ath_tx_tid_can_tx_or_sched(sc, tid))
break;
bf = ATH_TID_FIRST(tid);
if (bf == NULL) {
break;
}
ATH_TID_REMOVE(tid, bf, bf_list);
/* Sanity check! */
if (tid->tid != bf->bf_state.bfs_tid) {
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bfs_tid %d !="
" tid %d\n", __func__, bf->bf_state.bfs_tid,
tid->tid);
}
/* Normal completion handler */
bf->bf_comp = ath_tx_normal_comp;
/*
* Override this for now, until the non-aggregate
* completion handler correctly handles software retransmits.
*/
bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK;
/* Update CLRDMASK just before this frame is queued */
ath_tx_update_clrdmask(sc, tid, bf);
/* Program descriptors + rate control */
ath_tx_do_ratelookup(sc, bf);
ath_tx_calc_duration(sc, bf);
ath_tx_calc_protection(sc, bf);
ath_tx_set_rtscts(sc, bf);
ath_tx_rate_fill_rcflags(sc, bf);
ath_tx_setds(sc, bf);
/*
* Update the current leak count if
* we're leaking frames; and set the
* MORE flag as appropriate.
*/
ath_tx_leak_count_update(sc, tid, bf);
/* Track outstanding buffer count to hardware */
/* aggregates are "one" buffer */
tid->hwq_depth++;
/* Punt to hardware or software txq */
ath_tx_handoff(sc, txq, bf);
}
}
/*
* Schedule some packets to the given hardware queue.
*
* This function walks the list of TIDs (ie, ath_node TIDs
* with queued traffic) and attempts to schedule traffic
* from them.
*
* TID scheduling is implemented as a FIFO, with TIDs being
* added to the end of the queue after some frames have been
* scheduled.
*/
void
ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_tid *tid, *next, *last;
ATH_TX_LOCK_ASSERT(sc);
/*
* For non-EDMA chips, aggr frames that have been built are
* in axq_aggr_depth, whether they've been scheduled or not.
* There's no FIFO, so txq->axq_depth is what's been scheduled
* to the hardware.
*
* For EDMA chips, we do it in two stages. The existing code
* builds a list of frames to go to the hardware and the EDMA
* code turns it into a single entry to push into the FIFO.
* That way we don't take up one packet per FIFO slot.
* We do push one aggregate per FIFO slot though, just to keep
* things simple.
*
* The FIFO depth is what's in the hardware; the txq->axq_depth
* is what's been scheduled to the FIFO.
*
* fifo.axq_depth is the number of frames (or aggregates) pushed
* into the EDMA FIFO. For multi-frame lists, this is the number
* of frames pushed in.
* axq_fifo_depth is the number of FIFO slots currently busy.
*/
/* For EDMA and non-EDMA, check built/scheduled against aggr limit */
if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr) {
sc->sc_aggr_stats.aggr_sched_nopkt++;
return;
}
/*
* For non-EDMA chips, axq_depth is the "what's scheduled to
* the hardware list". For EDMA it's "What's built for the hardware"
* and fifo.axq_depth is how many frames have been dispatched
* already to the hardware.
*/
if (txq->axq_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_nonaggr) {
sc->sc_aggr_stats.aggr_sched_nopkt++;
return;
}
last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
/*
* Suspend paused queues here; they'll be resumed
* once the addba completes or times out.
*/
DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
__func__, tid->tid, tid->paused);
ath_tx_tid_unsched(sc, tid);
/*
* This node may be in power-save and we're leaking
* a frame; be careful.
*/
if (! ath_tx_tid_can_tx_or_sched(sc, tid)) {
goto loop_done;
}
if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
else
ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
/* Not empty? Re-schedule */
if (tid->axq_depth != 0)
ath_tx_tid_sched(sc, tid);
/*
* Give the software queue time to aggregate more
* packets. If we aren't running aggregation then
* we should still limit the hardware queue depth.
*/
/* XXX TXQ locking */
if (txq->axq_aggr_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_aggr) {
break;
}
if (txq->axq_depth >= sc->sc_hwq_limit_nonaggr) {
break;
}
loop_done:
/*
* If this was the last entry on the original list, stop.
* Otherwise nodes that have been rescheduled onto the end
* of the TID FIFO list will just keep being rescheduled.
*
* XXX What should we do about nodes that were paused
* but are pending a leaking frame in response to a ps-poll?
* They'll be put at the front of the list; so they'll
* prematurely trigger this condition! Ew.
*/
if (tid == last)
break;
}
}
/*
* TX addba handling
*/
/*
* Return net80211 TID struct pointer, or NULL for none
*/
struct ieee80211_tx_ampdu *
ath_tx_get_tx_tid(struct ath_node *an, int tid)
{
struct ieee80211_node *ni = &an->an_node;
struct ieee80211_tx_ampdu *tap;
if (tid == IEEE80211_NONQOS_TID)
return NULL;
tap = &ni->ni_tx_ampdu[tid];
return tap;
}
/*
* Is AMPDU-TX running?
*/
static int
ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
{
struct ieee80211_tx_ampdu *tap;
if (tid == IEEE80211_NONQOS_TID)
return 0;
tap = ath_tx_get_tx_tid(an, tid);
if (tap == NULL)
return 0; /* Not valid; default to not running */
return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
}
/*
* Is AMPDU-TX negotiation pending?
*/
static int
ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
{
struct ieee80211_tx_ampdu *tap;
if (tid == IEEE80211_NONQOS_TID)
return 0;
tap = ath_tx_get_tx_tid(an, tid);
if (tap == NULL)
return 0; /* Not valid; default to not pending */
return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
}
/*
* Is AMPDU-TX pending for the given TID?
*/
/*
* Method to handle sending an ADDBA request.
*
* We tap this so the relevant flags can be set to pause the TID
* whilst waiting for the response.
*
* XXX there's no timeout handler we can override?
*/
int
ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
int dialogtoken, int baparamset, int batimeout)
{
struct ath_softc *sc = ni->ni_ic->ic_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
/*
* XXX danger Will Robinson!
*
* Although the taskqueue may be running and scheduling some more
* packets, these should all be _before_ the addba sequence number.
* However, net80211 will keep self-assigning sequence numbers
* until addba has been negotiated.
*
* In the past, these packets would be "paused" (which still works
* fine, as they're being scheduled to the driver in the same
* serialised method which is calling the addba request routine)
* and when the aggregation session begins, they'll be dequeued
* as aggregate packets and added to the BAW. However, now there's
* a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
* packets. Thus they never get included in the BAW tracking and
* this can cause the initial burst of packets after the addba
* negotiation to "hang", as they quickly fall outside the BAW.
*
* The "eventual" solution should be to tag these packets with
* dobaw. Although net80211 has given us a sequence number,
* it'll be "after" the left edge of the BAW and thus it'll
* fall within it.
*/
ATH_TX_LOCK(sc);
/*
* This is a bit annoying. Until net80211 HT code inherits some
* (any) locking, we may have this called in parallel BUT only
* one response/timeout will be called. Grr.
*/
if (atid->addba_tx_pending == 0) {
ath_tx_tid_pause(sc, atid);
atid->addba_tx_pending = 1;
}
ATH_TX_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: %6D: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
__func__,
ni->ni_macaddr,
":",
dialogtoken, baparamset, batimeout);
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: txa_start=%d, ni_txseqs=%d\n",
__func__, tap->txa_start, ni->ni_txseqs[tid]);
return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
batimeout);
}
/*
* Handle an ADDBA response.
*
* We unpause the queue so TX'ing can resume.
*
* Any packets TX'ed from this point should be "aggregate" (whether
* aggregate or not) so the BAW is updated.
*
* Note! net80211 keeps self-assigning sequence numbers until
* ampdu is negotiated. This means the initially-negotiated BAW left
* edge won't match the ni->ni_txseq.
*
* So, being very dirty, the BAW left edge is "slid" here to match
* ni->ni_txseq.
*
* What likely SHOULD happen is that all packets subsequent to the
* addba request should be tagged as aggregate and queued as non-aggregate
* frames; thus updating the BAW. For now though, I'll just slide the
* window.
*/
int
ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
int status, int code, int batimeout)
{
struct ath_softc *sc = ni->ni_ic->ic_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
int r;
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: %6D: called; status=%d, code=%d, batimeout=%d\n", __func__,
ni->ni_macaddr,
":",
status, code, batimeout);
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: txa_start=%d, ni_txseqs=%d\n",
__func__, tap->txa_start, ni->ni_txseqs[tid]);
/*
* Call this first, so the interface flags get updated
* before the TID is unpaused. Otherwise a race condition
* exists where the unpaused TID still doesn't yet have
* IEEE80211_AGGR_RUNNING set.
*/
r = sc->sc_addba_response(ni, tap, status, code, batimeout);
ATH_TX_LOCK(sc);
atid->addba_tx_pending = 0;
/*
* XXX dirty!
* Slide the BAW left edge to wherever net80211 left it for us.
* Read above for more information.
*/
tap->txa_start = ni->ni_txseqs[tid];
ath_tx_tid_resume(sc, atid);
ATH_TX_UNLOCK(sc);
return r;
}
/*
* Stop ADDBA on a queue.
*
* This can be called whilst BAR TX is currently active on the queue,
* so make sure this is unblocked before continuing.
*/
void
ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
{
struct ath_softc *sc = ni->ni_ic->ic_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
ath_bufhead bf_cq;
struct ath_buf *bf;
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: called\n",
__func__,
ni->ni_macaddr,
":");
/*
* Pause TID traffic early, so there aren't any races
* Unblock the pending BAR held traffic, if it's currently paused.
*/
ATH_TX_LOCK(sc);
ath_tx_tid_pause(sc, atid);
if (atid->bar_wait) {
/*
* bar_unsuspend() expects bar_tx == 1, as it should be
* called from the TX completion path. This quietens
* the warning. It's cleared for us anyway.
*/
atid->bar_tx = 1;
ath_tx_tid_bar_unsuspend(sc, atid);
}
ATH_TX_UNLOCK(sc);
/* There's no need to hold the TXQ lock here */
sc->sc_addba_stop(ni, tap);
/*
* ath_tx_tid_cleanup will resume the TID if possible, otherwise
* it'll set the cleanup flag, and it'll be unpaused once
* things have been cleaned up.
*/
TAILQ_INIT(&bf_cq);
ATH_TX_LOCK(sc);
/*
* In case there's a followup call to this, only call it
* if we don't have a cleanup in progress.
*
* Since we've paused the queue above, we need to make
* sure we unpause if there's already a cleanup in
* progress - it means something else is also doing
* this stuff, so we don't need to also keep it paused.
*/
if (atid->cleanup_inprogress) {
ath_tx_tid_resume(sc, atid);
} else {
ath_tx_tid_cleanup(sc, an, tid, &bf_cq);
/*
* Unpause the TID if no cleanup is required.
*/
if (! atid->cleanup_inprogress)
ath_tx_tid_resume(sc, atid);
}
ATH_TX_UNLOCK(sc);
/* Handle completing frames and fail them */
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 1);
}
}
/*
* Handle a node reassociation.
*
* We may have a bunch of frames queued to the hardware; those need
* to be marked as cleanup.
*/
void
ath_tx_node_reassoc(struct ath_softc *sc, struct ath_node *an)
{
struct ath_tid *tid;
int i;
ath_bufhead bf_cq;
struct ath_buf *bf;
TAILQ_INIT(&bf_cq);
ATH_TX_UNLOCK_ASSERT(sc);
ATH_TX_LOCK(sc);
for (i = 0; i < IEEE80211_TID_SIZE; i++) {
tid = &an->an_tid[i];
if (tid->hwq_depth == 0)
continue;
DPRINTF(sc, ATH_DEBUG_NODE,
"%s: %6D: TID %d: cleaning up TID\n",
__func__,
an->an_node.ni_macaddr,
":",
i);
/*
* In case there's a followup call to this, only call it
* if we don't have a cleanup in progress.
*/
if (! tid->cleanup_inprogress) {
ath_tx_tid_pause(sc, tid);
ath_tx_tid_cleanup(sc, an, i, &bf_cq);
/*
* Unpause the TID if no cleanup is required.
*/
if (! tid->cleanup_inprogress)
ath_tx_tid_resume(sc, tid);
}
}
ATH_TX_UNLOCK(sc);
/* Handle completing frames and fail them */
while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
TAILQ_REMOVE(&bf_cq, bf, bf_list);
ath_tx_default_comp(sc, bf, 1);
}
}
/*
* Note: net80211 bar_timeout() doesn't call this function on BAR failure;
* it simply tears down the aggregation session. Ew.
*
* It however will call ieee80211_ampdu_stop() which will call
* ic->ic_addba_stop().
*
* XXX This uses a hard-coded max BAR count value; the whole
* XXX BAR TX success or failure should be better handled!
*/
void
ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
int status)
{
struct ath_softc *sc = ni->ni_ic->ic_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
int attempts = tap->txa_attempts;
int old_txa_start;
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: %6D: called; txa_tid=%d, atid->tid=%d, status=%d, attempts=%d, txa_start=%d, txa_seqpending=%d\n",
__func__,
ni->ni_macaddr,
":",
tap->txa_tid,
atid->tid,
status,
attempts,
tap->txa_start,
tap->txa_seqpending);
/* Note: This may update the BAW details */
/*
* XXX What if this does slide the BAW along? We need to somehow
* XXX either fix things when it does happen, or prevent the
* XXX seqpending value to be anything other than exactly what
* XXX the hell we want!
*
* XXX So for now, how I do this inside the TX lock for now
* XXX and just correct it afterwards? The below condition should
* XXX never happen and if it does I need to fix all kinds of things.
*/
ATH_TX_LOCK(sc);
old_txa_start = tap->txa_start;
sc->sc_bar_response(ni, tap, status);
if (tap->txa_start != old_txa_start) {
device_printf(sc->sc_dev, "%s: tid=%d; txa_start=%d, old=%d, adjusting\n",
__func__,
tid,
tap->txa_start,
old_txa_start);
}
tap->txa_start = old_txa_start;
ATH_TX_UNLOCK(sc);
/* Unpause the TID */
/*
* XXX if this is attempt=50, the TID will be downgraded
* XXX to a non-aggregate session. So we must unpause the
* XXX TID here or it'll never be done.
*
* Also, don't call it if bar_tx/bar_wait are 0; something
* has beaten us to the punch? (XXX figure out what?)
*/
if (status == 0 || attempts == 50) {
ATH_TX_LOCK(sc);
if (atid->bar_tx == 0 || atid->bar_wait == 0)
DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
"%s: huh? bar_tx=%d, bar_wait=%d\n",
__func__,
atid->bar_tx, atid->bar_wait);
else
ath_tx_tid_bar_unsuspend(sc, atid);
ATH_TX_UNLOCK(sc);
}
}
/*
* This is called whenever the pending ADDBA request times out.
* Unpause and reschedule the TID.
*/
void
ath_addba_response_timeout(struct ieee80211_node *ni,
struct ieee80211_tx_ampdu *tap)
{
struct ath_softc *sc = ni->ni_ic->ic_softc;
int tid = tap->txa_tid;
struct ath_node *an = ATH_NODE(ni);
struct ath_tid *atid = &an->an_tid[tid];
DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
"%s: %6D: TID=%d, called; resuming\n",
__func__,
ni->ni_macaddr,
":",
tid);
ATH_TX_LOCK(sc);
atid->addba_tx_pending = 0;
ATH_TX_UNLOCK(sc);
/* Note: This updates the aggregate state to (again) pending */
sc->sc_addba_response_timeout(ni, tap);
/* Unpause the TID; which reschedules it */
ATH_TX_LOCK(sc);
ath_tx_tid_resume(sc, atid);
ATH_TX_UNLOCK(sc);
}
/*
* Check if a node is asleep or not.
*/
int
ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an)
{
ATH_TX_LOCK_ASSERT(sc);
return (an->an_is_powersave);
}
/*
* Mark a node as currently "in powersaving."
* This suspends all traffic on the node.
*
* This must be called with the node/tx locks free.
*
* XXX TODO: the locking silliness below is due to how the node
* locking currently works. Right now, the node lock is grabbed
* to do rate control lookups and these are done with the TX
* queue lock held. This means the node lock can't be grabbed
* first here or a LOR will occur.
*
* Eventually (hopefully!) the TX path code will only grab
* the TXQ lock when transmitting and the ath_node lock when
* doing node/TID operations. There are other complications -
* the sched/unsched operations involve walking the per-txq
* 'active tid' list and this requires both locks to be held.
*/
void
ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an)
{
struct ath_tid *atid;
struct ath_txq *txq;
int tid;
ATH_TX_UNLOCK_ASSERT(sc);
/* Suspend all traffic on the node */
ATH_TX_LOCK(sc);
if (an->an_is_powersave) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: %6D: node was already asleep!\n",
__func__, an->an_node.ni_macaddr, ":");
ATH_TX_UNLOCK(sc);
return;
}
for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
atid = &an->an_tid[tid];
txq = sc->sc_ac2q[atid->ac];
ath_tx_tid_pause(sc, atid);
}
/* Mark node as in powersaving */
an->an_is_powersave = 1;
ATH_TX_UNLOCK(sc);
}
/*
* Mark a node as currently "awake."
* This resumes all traffic to the node.
*/
void
ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an)
{
struct ath_tid *atid;
struct ath_txq *txq;
int tid;
ATH_TX_UNLOCK_ASSERT(sc);
ATH_TX_LOCK(sc);
/* !? */
if (an->an_is_powersave == 0) {
ATH_TX_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: an=%p: node was already awake\n",
__func__, an);
return;
}
/* Mark node as awake */
an->an_is_powersave = 0;
/*
* Clear any pending leaked frame requests
*/
an->an_leak_count = 0;
for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
atid = &an->an_tid[tid];
txq = sc->sc_ac2q[atid->ac];
ath_tx_tid_resume(sc, atid);
}
ATH_TX_UNLOCK(sc);
}
static int
ath_legacy_dma_txsetup(struct ath_softc *sc)
{
/* nothing new needed */
return (0);
}
static int
ath_legacy_dma_txteardown(struct ath_softc *sc)
{
/* nothing new needed */
return (0);
}
void
ath_xmit_setup_legacy(struct ath_softc *sc)
{
/*
* For now, just set the descriptor length to sizeof(ath_desc);
* worry about extracting the real length out of the HAL later.
*/
sc->sc_tx_desclen = sizeof(struct ath_desc);
sc->sc_tx_statuslen = sizeof(struct ath_desc);
sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */
sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup;
sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown;
sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func;
sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart;
sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff;
sc->sc_tx.xmit_drain = ath_legacy_tx_drain;
}
↑ V547 Expression 't == 0' is always true.
↑ V547 Expression 'ts.ts_status == 0' is always true.
↑ V547 Expression 't == 0' is always true.