/*
* Copyright 2007-2012, Haiku, Inc. All Rights Reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Ithamar Adema, ithamar AT unet DOT nl
* Axel Dörfler, axeld@pinc-software.de
*/
#include "hda_controller_defs.h"
#include <algorithm>
#include <vm/vm.h>
#include "driver.h"
#include "hda_codec_defs.h"
#define MAKE_RATE(base, multiply, divide) \
((base == 44100 ? FORMAT_44_1_BASE_RATE : 0) \
| ((multiply - 1) << FORMAT_MULTIPLY_RATE_SHIFT) \
| ((divide - 1) << FORMAT_DIVIDE_RATE_SHIFT))
#define HDAC_INPUT_STREAM_OFFSET(controller, index) \
((index) * HDAC_STREAM_SIZE)
#define HDAC_OUTPUT_STREAM_OFFSET(controller, index) \
(((controller)->num_input_streams + (index)) * HDAC_STREAM_SIZE)
#define HDAC_BIDIR_STREAM_OFFSET(controller, index) \
(((controller)->num_input_streams + (controller)->num_output_streams \
+ (index)) * HDAC_STREAM_SIZE)
#define ALIGN(size, align) (((size) + align - 1) & ~(align - 1))
#define PCI_VENDOR_AMD 0x1002
#define PCI_VENDOR_CREATIVE 0x1102
#define PCI_VENDOR_INTEL 0x8086
#define PCI_VENDOR_NVIDIA 0x10de
#define PCI_VENDOR_VMWARE 0x15ad
#define PCI_ALL_DEVICES 0xffffffff
#define HDA_QUIRK_SNOOP 0x0001
#define HDA_QUIRK_NO_MSI 0x0002
#define HDA_QUIRK_NO_CORBRP_RESET_ACK 0x0004
static const struct {
uint32 vendor_id, device_id;
uint32 quirks;
} kControllerQuirks[] = {
{ PCI_VENDOR_INTEL, 0x080a, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x0a0c, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x0c0c, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x0d0c, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x0f04, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x160c, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x1c20, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x1d20, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x1e20, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x2284, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x3198, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x34c8, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x3b56, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x3b57, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x5a98, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x811b, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x8c20, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x8ca0, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x8d20, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x8d21, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x9c20, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x9c21, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x9ca0, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x9d70, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x9d71, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0x9dc8, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0xa170, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0xa171, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0xa2f0, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_INTEL, 0xa348, HDA_QUIRK_SNOOP },
// Enable snooping for ATI and Nvidia, right now for all their hda-devices,
// but only based on guessing.
{ PCI_VENDOR_AMD, PCI_ALL_DEVICES, HDA_QUIRK_SNOOP },
{ PCI_VENDOR_NVIDIA, PCI_ALL_DEVICES, HDA_QUIRK_SNOOP | HDA_QUIRK_NO_MSI
| HDA_QUIRK_NO_CORBRP_RESET_ACK },
{ PCI_VENDOR_CREATIVE, 0x0010, HDA_QUIRK_NO_MSI },
{ PCI_VENDOR_CREATIVE, 0x0012, HDA_QUIRK_NO_MSI },
{ PCI_VENDOR_VMWARE, PCI_ALL_DEVICES, HDA_QUIRK_NO_CORBRP_RESET_ACK },
};
static const struct {
uint32 multi_rate;
uint32 hw_rate;
uint32 rate;
} kRates[] = {
{B_SR_8000, MAKE_RATE(48000, 1, 6), 8000},
{B_SR_11025, MAKE_RATE(44100, 1, 4), 11025},
{B_SR_16000, MAKE_RATE(48000, 1, 3), 16000},
{B_SR_22050, MAKE_RATE(44100, 1, 2), 22050},
{B_SR_32000, MAKE_RATE(48000, 2, 3), 32000},
{B_SR_44100, MAKE_RATE(44100, 1, 1), 44100},
{B_SR_48000, MAKE_RATE(48000, 1, 1), 48000},
{B_SR_88200, MAKE_RATE(44100, 2, 1), 88200},
{B_SR_96000, MAKE_RATE(48000, 2, 1), 96000},
{B_SR_176400, MAKE_RATE(44100, 4, 1), 176400},
{B_SR_192000, MAKE_RATE(48000, 4, 1), 192000},
// this one is not supported by hardware.
// {B_SR_384000, MAKE_RATE(44100, ??, ??), 384000},
};
static uint32
get_controller_quirks(pci_info& info)
{
for (size_t i = 0;
i < sizeof(kControllerQuirks) / sizeof(kControllerQuirks[0]); i++) {
if (info.vendor_id == kControllerQuirks[i].vendor_id
&& (kControllerQuirks[i].device_id == PCI_ALL_DEVICES
|| kControllerQuirks[i].device_id == info.device_id))
return kControllerQuirks[i].quirks;
}
return 0;
}
static inline bool
update_pci_register(hda_controller* controller, uint8 reg, uint32 mask,
uint32 value, uint8 size, bool check = false)
{
uint32 originalValue = (gPci->read_pci_config)(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function, reg, size);
(gPci->write_pci_config)(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function,
reg, size, (originalValue & mask) | value);
if (!check)
return true;
uint32 newValue = (gPci->read_pci_config)(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function, reg, size);
return (newValue & ~mask) == value;
}
static inline rirb_t&
current_rirb(hda_controller* controller)
{
return controller->rirb[controller->rirb_read_pos];
}
static inline uint32
next_rirb(hda_controller* controller)
{
return (controller->rirb_read_pos + 1) % controller->rirb_length;
}
static inline uint32
next_corb(hda_controller* controller)
{
return (controller->corb_write_pos + 1) % controller->corb_length;
}
/*! Called with interrupts off.
Returns \c true, if the scheduler shall be invoked.
*/
static bool
stream_handle_interrupt(hda_controller* controller, hda_stream* stream,
uint32 index)
{
if (!stream->running)
return false;
uint8 status = stream->Read8(HDAC_STREAM_STATUS);
if (status == 0)
return false;
stream->Write8(HDAC_STREAM_STATUS, status);
if ((status & STATUS_FIFO_ERROR) != 0)
dprintf("hda: stream fifo error (id:%" B_PRIu32 ")\n", stream->id);
if ((status & STATUS_DESCRIPTOR_ERROR) != 0) {
dprintf("hda: stream descriptor error (id:%" B_PRIu32 ")\n",
stream->id);
}
if ((status & STATUS_BUFFER_COMPLETED) == 0) {
dprintf("hda: stream buffer not completed (id:%" B_PRIu32 ")\n",
stream->id);
return false;
}
// Normally we should use the DMA position for the stream. Apparently there
// are broken chipsets, which don't support it correctly. If we detect this,
// we switch to using the LPIB instead. The link position is ahead of the
// DMA position for recording and behind for playback streams, but just
// for determining the currently active buffer, it should be good enough.
if (stream->use_dma_position && stream->incorrect_position_count >= 32) {
dprintf("hda: DMA position for stream (id:%" B_PRIu32 ") seems to be "
"broken. Switching to using LPIB.\n", stream->id);
stream->use_dma_position = false;
}
// Determine the buffer we're switching to. Some chipsets seem to trigger
// the interrupt before the DMA position in memory has been updated. We
// round it, so we still get the right buffer.
uint32 dmaPosition = stream->use_dma_position
? controller->stream_positions[index * 2]
: stream->Read32(HDAC_STREAM_POSITION);
uint32 bufferIndex = ((dmaPosition + stream->buffer_size / 2)
/ stream->buffer_size) % stream->num_buffers;
// get the current recording/playing position and the system time
uint32 linkBytePosition = stream->Read32(HDAC_STREAM_POSITION);
bigtime_t now = system_time();
// compute the frame position for the byte position
uint32 linkFramePosition = 0;
while (linkBytePosition >= stream->buffer_size) {
linkFramePosition += stream->buffer_length;
linkBytePosition -= stream->buffer_size;
}
linkFramePosition += std::min(
linkBytePosition / (stream->num_channels * stream->sample_size),
stream->buffer_length);
// compute the number of frames processed since the previous interrupt
int32 framesProcessed = (int32)linkFramePosition
- (int32)stream->last_link_frame_position;
if (framesProcessed < 0)
framesProcessed += stream->num_buffers * stream->buffer_length;
stream->last_link_frame_position = linkFramePosition;
// update stream playing/recording state and notify buffer_exchange()
acquire_spinlock(&stream->lock);
if (bufferIndex == (stream->buffer_cycle + 1) % stream->num_buffers)
stream->incorrect_position_count = 0;
else
stream->incorrect_position_count++;
stream->real_time = now;
stream->frames_count += framesProcessed;
stream->buffer_cycle = bufferIndex;
release_spinlock(&stream->lock);
release_sem_etc(controller->buffer_ready_sem, 1, B_DO_NOT_RESCHEDULE);
return true;
}
static int32
hda_interrupt_handler(hda_controller* controller)
{
int32 handled = B_HANDLED_INTERRUPT;
// Check if this interrupt is ours
uint32 intrStatus = controller->Read32(HDAC_INTR_STATUS);
if ((intrStatus & INTR_STATUS_GLOBAL) == 0)
return B_UNHANDLED_INTERRUPT;
// Controller or stream related?
if (intrStatus & INTR_STATUS_CONTROLLER) {
uint8 rirbStatus = controller->Read8(HDAC_RIRB_STATUS);
uint8 corbStatus = controller->Read8(HDAC_CORB_STATUS);
// Check for incoming responses
if (rirbStatus) {
controller->Write8(HDAC_RIRB_STATUS, rirbStatus);
if ((rirbStatus & RIRB_STATUS_RESPONSE) != 0) {
uint16 writePos = (controller->Read16(HDAC_RIRB_WRITE_POS) + 1)
% controller->rirb_length;
for (; controller->rirb_read_pos != writePos;
controller->rirb_read_pos = next_rirb(controller)) {
uint32 response = current_rirb(controller).response;
uint32 responseFlags = current_rirb(controller).flags;
uint32 cad = responseFlags & RESPONSE_FLAGS_CODEC_MASK;
hda_codec* codec = controller->codecs[cad];
if (codec == NULL) {
dprintf("hda: Response for unknown codec %" B_PRIu32
": %08" B_PRIx32 "/%08" B_PRIx32 "\n", cad,
response, responseFlags);
continue;
}
if ((responseFlags & RESPONSE_FLAGS_UNSOLICITED) != 0) {
dprintf("hda: Unsolicited response: %08" B_PRIx32
"/%08" B_PRIx32 "\n", response, responseFlags);
codec->unsol_responses[codec->unsol_response_write++] =
response;
codec->unsol_response_write %= MAX_CODEC_UNSOL_RESPONSES;
release_sem_etc(codec->unsol_response_sem, 1,
B_DO_NOT_RESCHEDULE);
handled = B_INVOKE_SCHEDULER;
continue;
}
if (codec->response_count >= MAX_CODEC_RESPONSES) {
dprintf("hda: too many responses received for codec %"
B_PRIu32 ": %08" B_PRIx32 "/%08" B_PRIx32 "!\n",
cad, response, responseFlags);
continue;
}
// Store response in codec
codec->responses[codec->response_count++] = response;
release_sem_etc(codec->response_sem, 1, B_DO_NOT_RESCHEDULE);
handled = B_INVOKE_SCHEDULER;
}
}
if ((rirbStatus & RIRB_STATUS_OVERRUN) != 0)
dprintf("hda: RIRB Overflow\n");
}
// Check for sending errors
if (corbStatus) {
controller->Write8(HDAC_CORB_STATUS, corbStatus);
if ((corbStatus & CORB_STATUS_MEMORY_ERROR) != 0)
dprintf("hda: CORB Memory Error!\n");
}
}
if ((intrStatus & INTR_STATUS_STREAM_MASK) != 0) {
for (uint32 index = 0; index < HDA_MAX_STREAMS; index++) {
if ((intrStatus & (1 << index)) != 0) {
if (controller->streams[index]) {
if (stream_handle_interrupt(controller,
controller->streams[index], index)) {
handled = B_INVOKE_SCHEDULER;
}
} else {
dprintf("hda: Stream interrupt for unconfigured stream "
"%" B_PRIu32 "!\n", index);
}
}
}
}
// NOTE: See HDA001 => CIS/GIS cannot be cleared!
return handled;
}
static status_t
reset_controller(hda_controller* controller)
{
uint32 control = controller->Read32(HDAC_GLOBAL_CONTROL);
if ((control & GLOBAL_CONTROL_RESET) != 0) {
controller->Write32(HDAC_INTR_CONTROL, 0);
// stop streams
for (uint32 i = 0; i < controller->num_input_streams; i++) {
controller->Write8(HDAC_STREAM_CONTROL0 + HDAC_STREAM_BASE
+ HDAC_INPUT_STREAM_OFFSET(controller, i), 0);
controller->Write8(HDAC_STREAM_STATUS + HDAC_STREAM_BASE
+ HDAC_INPUT_STREAM_OFFSET(controller, i), 0);
}
for (uint32 i = 0; i < controller->num_output_streams; i++) {
controller->Write8(HDAC_STREAM_CONTROL0 + HDAC_STREAM_BASE
+ HDAC_OUTPUT_STREAM_OFFSET(controller, i), 0);
controller->Write8(HDAC_STREAM_STATUS + HDAC_STREAM_BASE
+ HDAC_OUTPUT_STREAM_OFFSET(controller, i), 0);
}
for (uint32 i = 0; i < controller->num_bidir_streams; i++) {
controller->Write8(HDAC_STREAM_CONTROL0 + HDAC_STREAM_BASE
+ HDAC_BIDIR_STREAM_OFFSET(controller, i), 0);
controller->Write8(HDAC_STREAM_STATUS + HDAC_STREAM_BASE
+ HDAC_BIDIR_STREAM_OFFSET(controller, i), 0);
}
// stop DMA
controller->ReadModifyWrite8(HDAC_CORB_CONTROL, HDAC_CORB_CONTROL_MASK, 0);
controller->ReadModifyWrite8(HDAC_RIRB_CONTROL, HDAC_RIRB_CONTROL_MASK, 0);
uint8 corbControl = 0;
uint8 rirbControl = 0;
for (int timeout = 0; timeout < 10; timeout++) {
snooze(100);
corbControl = controller->Read8(HDAC_CORB_CONTROL);
rirbControl = controller->Read8(HDAC_RIRB_CONTROL);
if (corbControl == 0 && rirbControl == 0)
break;
}
if (corbControl != 0 || rirbControl != 0) {
dprintf("hda: unable to stop dma\n");
return B_BUSY;
}
// reset DMA position buffer
controller->Write32(HDAC_DMA_POSITION_BASE_LOWER, 0);
controller->Write32(HDAC_DMA_POSITION_BASE_UPPER, 0);
control = controller->Read32(HDAC_GLOBAL_CONTROL);
}
// Set reset bit - it must be asserted for at least 100us
controller->Write32(HDAC_GLOBAL_CONTROL, control & ~GLOBAL_CONTROL_RESET);
for (int timeout = 0; timeout < 10; timeout++) {
snooze(100);
control = controller->Read32(HDAC_GLOBAL_CONTROL);
if ((control & GLOBAL_CONTROL_RESET) == 0)
break;
}
if ((control & GLOBAL_CONTROL_RESET) != 0) {
dprintf("hda: unable to reset controller\n");
return B_BUSY;
}
// Wait for codec PLL to lock at least 100us, section 5.5.1.2
snooze(1000);
// Unset reset bit
control = controller->Read32(HDAC_GLOBAL_CONTROL);
controller->Write32(HDAC_GLOBAL_CONTROL, control | GLOBAL_CONTROL_RESET);
for (int timeout = 0; timeout < 10; timeout++) {
snooze(100);
control = controller->Read32(HDAC_GLOBAL_CONTROL);
if ((control & GLOBAL_CONTROL_RESET) != 0)
break;
}
if ((control & GLOBAL_CONTROL_RESET) == 0) {
dprintf("hda: unable to exit reset\n");
return B_BUSY;
}
// Wait for codecs to finish their own reset (apparently needs more
// time than documented in the specs)
snooze(1000);
// Enable unsolicited responses
control = controller->Read32(HDAC_GLOBAL_CONTROL);
controller->Write32(HDAC_GLOBAL_CONTROL,
control | GLOBAL_CONTROL_UNSOLICITED);
return B_OK;
}
/*! Allocates and initializes the Command Output Ring Buffer (CORB), and
Response Input Ring Buffer (RIRB) to the maximum supported size, and also
the DMA position buffer.
Programs the controller hardware to make use of these buffers (the DMA
positioning is actually enabled in hda_stream_setup_buffers()).
*/
static status_t
init_corb_rirb_pos(hda_controller* controller, uint32 quirks)
{
// Determine and set size of CORB
uint8 corbSize = controller->Read8(HDAC_CORB_SIZE);
if ((corbSize & CORB_SIZE_CAP_256_ENTRIES) != 0) {
controller->corb_length = 256;
controller->ReadModifyWrite8(
HDAC_CORB_SIZE, HDAC_CORB_SIZE_MASK,
CORB_SIZE_256_ENTRIES);
} else if (corbSize & CORB_SIZE_CAP_16_ENTRIES) {
controller->corb_length = 16;
controller->ReadModifyWrite8(
HDAC_CORB_SIZE, HDAC_CORB_SIZE_MASK,
CORB_SIZE_16_ENTRIES);
} else if (corbSize & CORB_SIZE_CAP_2_ENTRIES) {
controller->corb_length = 2;
controller->ReadModifyWrite8(
HDAC_CORB_SIZE, HDAC_CORB_SIZE_MASK,
CORB_SIZE_2_ENTRIES);
}
// Determine and set size of RIRB
uint8 rirbSize = controller->Read8(HDAC_RIRB_SIZE);
if (rirbSize & RIRB_SIZE_CAP_256_ENTRIES) {
controller->rirb_length = 256;
controller->ReadModifyWrite8(
HDAC_RIRB_SIZE, HDAC_RIRB_SIZE_MASK,
RIRB_SIZE_256_ENTRIES);
} else if (rirbSize & RIRB_SIZE_CAP_16_ENTRIES) {
controller->rirb_length = 16;
controller->ReadModifyWrite8(
HDAC_RIRB_SIZE, HDAC_RIRB_SIZE_MASK,
RIRB_SIZE_16_ENTRIES);
} else if (rirbSize & RIRB_SIZE_CAP_2_ENTRIES) {
controller->rirb_length = 2;
controller->ReadModifyWrite8(
HDAC_RIRB_SIZE, HDAC_RIRB_SIZE_MASK,
RIRB_SIZE_2_ENTRIES);
}
// Determine rirb offset in memory and total size of corb+alignment+rirb
uint32 rirbOffset = ALIGN(controller->corb_length * sizeof(corb_t), 128);
uint32 posOffset = ALIGN(rirbOffset
+ controller->rirb_length * sizeof(rirb_t), 128);
uint8 posSize = 8 * (controller->num_input_streams
+ controller->num_output_streams + controller->num_bidir_streams);
uint32 memSize = PAGE_ALIGN(posOffset + posSize);
// Allocate memory area
controller->corb_rirb_pos_area = create_area("hda corb/rirb/pos",
(void**)&controller->corb, B_ANY_KERNEL_ADDRESS, memSize,
B_CONTIGUOUS, 0);
if (controller->corb_rirb_pos_area < 0)
return controller->corb_rirb_pos_area;
// Rirb is after corb+aligment
controller->rirb = (rirb_t*)(((uint8*)controller->corb) + rirbOffset);
physical_entry pe;
status_t status = get_memory_map(controller->corb, memSize, &pe, 1);
if (status != B_OK) {
delete_area(controller->corb_rirb_pos_area);
return status;
}
if (!controller->dma_snooping) {
vm_set_area_memory_type(controller->corb_rirb_pos_area,
pe.address, B_MTR_UC);
}
// Program CORB/RIRB for these locations
controller->Write32(HDAC_CORB_BASE_LOWER, (uint32)pe.address);
controller->Write32(HDAC_CORB_BASE_UPPER,
(uint32)((uint64)pe.address >> 32));
controller->Write32(HDAC_RIRB_BASE_LOWER, (uint32)pe.address + rirbOffset);
controller->Write32(HDAC_RIRB_BASE_UPPER,
(uint32)(((uint64)pe.address + rirbOffset) >> 32));
// Program DMA position update
controller->Write32(HDAC_DMA_POSITION_BASE_LOWER,
(uint32)pe.address + posOffset);
controller->Write32(HDAC_DMA_POSITION_BASE_UPPER,
(uint32)(((uint64)pe.address + posOffset) >> 32));
controller->stream_positions = (uint32*)
((uint8*)controller->corb + posOffset);
controller->ReadModifyWrite16(HDAC_CORB_WRITE_POS,
HDAC_CORB_WRITE_POS_MASK, 0);
// Reset CORB read pointer. Preseve bits marked as RsvdP.
// After setting the reset bit, we must wait for the hardware
// to acknowledge it, then manually unset it and wait for that
// to be acknowledged as well.
uint16 corbReadPointer = controller->Read16(HDAC_CORB_READ_POS);
corbReadPointer |= CORB_READ_POS_RESET;
controller->Write16(HDAC_CORB_READ_POS, corbReadPointer);
for (int timeout = 0; timeout < 10; timeout++) {
snooze(100);
corbReadPointer = controller->Read16(HDAC_CORB_READ_POS);
if ((corbReadPointer & CORB_READ_POS_RESET) != 0)
break;
}
if ((corbReadPointer & CORB_READ_POS_RESET) == 0) {
dprintf("hda: CORB read pointer reset not acknowledged\n");
// According to HDA spec v1.0a ch3.3.21, software must read the
// bit as 1 to verify that the reset completed, but not all HDA
// controllers follow that...
if ((quirks & HDA_QUIRK_NO_CORBRP_RESET_ACK) == 0)
return B_BUSY;
}
corbReadPointer &= ~CORB_READ_POS_RESET;
controller->Write16(HDAC_CORB_READ_POS, corbReadPointer);
for (int timeout = 0; timeout < 10; timeout++) {
snooze(100);
corbReadPointer = controller->Read16(HDAC_CORB_READ_POS);
if ((corbReadPointer & CORB_READ_POS_RESET) == 0)
break;
}
if ((corbReadPointer & CORB_READ_POS_RESET) != 0) {
dprintf("hda: CORB read pointer reset failed\n");
return B_BUSY;
}
// Reset RIRB write pointer
controller->ReadModifyWrite16(HDAC_RIRB_WRITE_POS,
RIRB_WRITE_POS_RESET, RIRB_WRITE_POS_RESET);
// Generate interrupt for every response
controller->ReadModifyWrite16(HDAC_RESPONSE_INTR_COUNT,
HDAC_RESPONSE_INTR_COUNT_MASK, 1);
// Setup cached read/write indices
controller->rirb_read_pos = 1;
controller->corb_write_pos = 0;
// Gentlemen, start your engines...
controller->ReadModifyWrite8(HDAC_CORB_CONTROL,
HDAC_CORB_CONTROL_MASK,
CORB_CONTROL_RUN | CORB_CONTROL_MEMORY_ERROR_INTR);
controller->ReadModifyWrite8(HDAC_RIRB_CONTROL,
HDAC_RIRB_CONTROL_MASK,
RIRB_CONTROL_DMA_ENABLE | RIRB_CONTROL_OVERRUN_INTR
| RIRB_CONTROL_RESPONSE_INTR);
return B_OK;
}
// #pragma mark - public stream functions
void
hda_stream_delete(hda_stream* stream)
{
if (stream->buffer_area >= 0)
delete_area(stream->buffer_area);
if (stream->buffer_descriptors_area >= 0)
delete_area(stream->buffer_descriptors_area);
free(stream);
}
hda_stream*
hda_stream_new(hda_audio_group* audioGroup, int type)
{
hda_controller* controller = audioGroup->codec->controller;
hda_stream* stream = (hda_stream*)calloc(1, sizeof(hda_stream));
if (stream == NULL)
return NULL;
stream->buffer_area = B_ERROR;
stream->buffer_descriptors_area = B_ERROR;
stream->type = type;
stream->controller = controller;
stream->incorrect_position_count = 0;
stream->use_dma_position = true;
switch (type) {
case STREAM_PLAYBACK:
stream->id = 1;
stream->offset = HDAC_OUTPUT_STREAM_OFFSET(controller, 0);
break;
case STREAM_RECORD:
stream->id = 2;
stream->offset = HDAC_INPUT_STREAM_OFFSET(controller, 0);
break;
default:
dprintf("%s: Unknown stream type %d!\n", __func__, type);
free(stream);
return NULL;
}
// find I/O and Pin widgets for this stream
if (hda_audio_group_get_widgets(audioGroup, stream) == B_OK) {
switch (type) {
case STREAM_PLAYBACK:
controller->streams[controller->num_input_streams] = stream;
break;
case STREAM_RECORD:
controller->streams[0] = stream;
break;
}
return stream;
}
dprintf("hda: hda_audio_group_get_widgets failed for %s stream\n",
type == STREAM_PLAYBACK ? " playback" : "record");
free(stream);
return NULL;
}
/*! Starts a stream's DMA engine, and enables generating and receiving
interrupts for this stream.
*/
status_t
hda_stream_start(hda_controller* controller, hda_stream* stream)
{
dprintf("hda_stream_start() offset %" B_PRIx32 "\n", stream->offset);
stream->frames_count = 0;
stream->last_link_frame_position = 0;
controller->Write32(HDAC_INTR_CONTROL, controller->Read32(HDAC_INTR_CONTROL)
| (1 << (stream->offset / HDAC_STREAM_SIZE)));
stream->Write8(HDAC_STREAM_CONTROL0, stream->Read8(HDAC_STREAM_CONTROL0)
| CONTROL0_BUFFER_COMPLETED_INTR | CONTROL0_FIFO_ERROR_INTR
| CONTROL0_DESCRIPTOR_ERROR_INTR | CONTROL0_RUN);
stream->running = true;
return B_OK;
}
/*! Stops the stream's DMA engine, and turns off interrupts for this
stream.
*/
status_t
hda_stream_stop(hda_controller* controller, hda_stream* stream)
{
dprintf("hda_stream_stop()\n");
stream->Write8(HDAC_STREAM_CONTROL0, stream->Read8(HDAC_STREAM_CONTROL0)
& ~(CONTROL0_BUFFER_COMPLETED_INTR | CONTROL0_FIFO_ERROR_INTR
| CONTROL0_DESCRIPTOR_ERROR_INTR | CONTROL0_RUN));
controller->Write32(HDAC_INTR_CONTROL, controller->Read32(HDAC_INTR_CONTROL)
& ~(1 << (stream->offset / HDAC_STREAM_SIZE)));
stream->running = false;
return B_OK;
}
status_t
hda_stream_setup_buffers(hda_audio_group* audioGroup, hda_stream* stream,
const char* desc)
{
// Clear previously allocated memory
if (stream->buffer_area >= 0) {
delete_area(stream->buffer_area);
stream->buffer_area = B_ERROR;
}
if (stream->buffer_descriptors_area >= 0) {
delete_area(stream->buffer_descriptors_area);
stream->buffer_descriptors_area = B_ERROR;
}
// Find out stream format and sample rate
uint16 format = (stream->num_channels - 1) & 0xf;
switch (stream->sample_format) {
case B_FMT_8BIT_S: format |= FORMAT_8BIT; stream->bps = 8; break;
case B_FMT_16BIT: format |= FORMAT_16BIT; stream->bps = 16; break;
case B_FMT_20BIT: format |= FORMAT_20BIT; stream->bps = 20; break;
case B_FMT_24BIT: format |= FORMAT_24BIT; stream->bps = 24; break;
case B_FMT_32BIT: format |= FORMAT_32BIT; stream->bps = 32; break;
default:
dprintf("hda: Invalid sample format: 0x%" B_PRIx32 "\n",
stream->sample_format);
break;
}
for (uint32 index = 0; index < sizeof(kRates) / sizeof(kRates[0]); index++) {
if (kRates[index].multi_rate == stream->sample_rate) {
format |= kRates[index].hw_rate;
stream->rate = kRates[index].rate;
break;
}
}
// Calculate size of buffer (aligned to 128 bytes)
stream->buffer_size = ALIGN(stream->buffer_length * stream->num_channels
* stream->sample_size, 128);
dprintf("hda: sample size %" B_PRIu32 ", num channels %" B_PRIu32 ", "
"buffer length %" B_PRIu32 "\n", stream->sample_size,
stream->num_channels, stream->buffer_length);
dprintf("hda: %s: setup stream %" B_PRIu32 ": SR=%" B_PRIu32 ", SF=%"
B_PRIu32 " F=0x%x (0x%" B_PRIx32 ")\n", __func__, stream->id,
stream->rate, stream->bps, format, stream->sample_format);
// Calculate total size of all buffers (aligned to size of B_PAGE_SIZE)
uint32 alloc = stream->buffer_size * stream->num_buffers;
alloc = PAGE_ALIGN(alloc);
// Allocate memory for buffers
uint8* buffer;
stream->buffer_area = create_area("hda buffers", (void**)&buffer,
B_ANY_KERNEL_ADDRESS, alloc, B_CONTIGUOUS, B_READ_AREA | B_WRITE_AREA);
if (stream->buffer_area < B_OK)
return stream->buffer_area;
// Get the physical address of memory
physical_entry pe;
status_t status = get_memory_map(buffer, alloc, &pe, 1);
if (status != B_OK) {
delete_area(stream->buffer_area);
return status;
}
phys_addr_t bufferPhysicalAddress = pe.address;
if (!stream->controller->dma_snooping) {
vm_set_area_memory_type(stream->buffer_area,
bufferPhysicalAddress, B_MTR_UC);
}
dprintf("hda: %s(%s): Allocated %" B_PRIu32 " bytes for %" B_PRIu32
" buffers\n", __func__, desc, alloc, stream->num_buffers);
// Store pointers (both virtual/physical)
for (uint32 index = 0; index < stream->num_buffers; index++) {
stream->buffers[index] = buffer + (index * stream->buffer_size);
stream->physical_buffers[index] = bufferPhysicalAddress
+ (index * stream->buffer_size);
}
// Now allocate BDL for buffer range
uint32 bdlCount = stream->num_buffers;
alloc = bdlCount * sizeof(bdl_entry_t);
alloc = PAGE_ALIGN(alloc);
bdl_entry_t* bufferDescriptors;
stream->buffer_descriptors_area = create_area("hda buffer descriptors",
(void**)&bufferDescriptors, B_ANY_KERNEL_ADDRESS, alloc,
B_CONTIGUOUS, 0);
if (stream->buffer_descriptors_area < B_OK) {
delete_area(stream->buffer_area);
return stream->buffer_descriptors_area;
}
// Get the physical address of memory
status = get_memory_map(bufferDescriptors, alloc, &pe, 1);
if (status != B_OK) {
delete_area(stream->buffer_area);
delete_area(stream->buffer_descriptors_area);
return status;
}
stream->physical_buffer_descriptors = pe.address;
if (!stream->controller->dma_snooping) {
vm_set_area_memory_type(stream->buffer_descriptors_area,
stream->physical_buffer_descriptors, B_MTR_UC);
}
dprintf("hda: %s(%s): Allocated %" B_PRIu32 " bytes for %" B_PRIu32
" BDLEs\n", __func__, desc, alloc, bdlCount);
// Setup buffer descriptor list (BDL) entries
uint32 fragments = 0;
for (uint32 index = 0; index < stream->num_buffers;
index++, bufferDescriptors++) {
bufferDescriptors->lower = (uint32)stream->physical_buffers[index];
bufferDescriptors->upper
= (uint32)((uint64)stream->physical_buffers[index] >> 32);
fragments++;
bufferDescriptors->length = stream->buffer_size;
bufferDescriptors->ioc = 1;
// we want an interrupt after every buffer
}
// Configure stream registers
stream->Write16(HDAC_STREAM_FORMAT, format);
stream->Write32(HDAC_STREAM_BUFFERS_BASE_LOWER,
(uint32)stream->physical_buffer_descriptors);
stream->Write32(HDAC_STREAM_BUFFERS_BASE_UPPER,
(uint32)(stream->physical_buffer_descriptors >> 32));
stream->Write16(HDAC_STREAM_LAST_VALID, fragments - 1);
// total cyclic buffer size in _bytes_
stream->Write32(HDAC_STREAM_BUFFER_SIZE, stream->buffer_size
* stream->num_buffers);
stream->Write8(HDAC_STREAM_CONTROL2, stream->id << CONTROL2_STREAM_SHIFT);
stream->controller->Write32(HDAC_DMA_POSITION_BASE_LOWER,
stream->controller->Read32(HDAC_DMA_POSITION_BASE_LOWER)
| DMA_POSITION_ENABLED);
dprintf("hda: stream: %" B_PRIu32 " fifo size: %d num_io_widgets: %"
B_PRIu32 "\n", stream->id, stream->Read16(HDAC_STREAM_FIFO_SIZE),
stream->num_io_widgets);
dprintf("hda: widgets: ");
hda_codec* codec = audioGroup->codec;
uint32 channelNum = 0;
for (uint32 i = 0; i < stream->num_io_widgets; i++) {
corb_t verb[2];
verb[0] = MAKE_VERB(codec->addr, stream->io_widgets[i],
VID_SET_CONVERTER_FORMAT, format);
uint32 val = stream->id << 4;
if (channelNum < stream->num_channels)
val |= channelNum;
else
val = 0;
verb[1] = MAKE_VERB(codec->addr, stream->io_widgets[i],
VID_SET_CONVERTER_STREAM_CHANNEL, val);
uint32 response[2];
hda_send_verbs(codec, verb, response, 2);
//channelNum += 2; // TODO stereo widget ? Every output gets the same stream for now
dprintf("%" B_PRIu32 " ", stream->io_widgets[i]);
hda_widget* widget = hda_audio_group_get_widget(audioGroup,
stream->io_widgets[i]);
if ((widget->capabilities.audio & AUDIO_CAP_DIGITAL) != 0) {
verb[0] = MAKE_VERB(codec->addr, stream->io_widgets[i],
VID_SET_DIGITAL_CONVERTER_CONTROL1, format);
hda_send_verbs(codec, verb, response, 1);
}
}
dprintf("\n");
snooze(1000);
return B_OK;
}
// #pragma mark - public controller functions
status_t
hda_send_verbs(hda_codec* codec, corb_t* verbs, uint32* responses, uint32 count)
{
hda_controller* controller = codec->controller;
uint32 sent = 0;
codec->response_count = 0;
while (sent < count) {
uint32 readPos = controller->Read16(HDAC_CORB_READ_POS);
uint32 queued = 0;
while (sent < count) {
uint32 writePos = next_corb(controller);
if (writePos == readPos) {
// There is no space left in the ring buffer; execute the
// queued commands and wait until
break;
}
controller->corb[writePos] = verbs[sent++];
controller->corb_write_pos = writePos;
queued++;
}
controller->Write16(HDAC_CORB_WRITE_POS, controller->corb_write_pos);
status_t status = acquire_sem_etc(codec->response_sem, queued,
B_RELATIVE_TIMEOUT, 50000ULL);
if (status != B_OK)
return status;
}
if (responses != NULL)
memcpy(responses, codec->responses, count * sizeof(uint32));
return B_OK;
}
status_t
hda_verb_write(hda_codec* codec, uint32 nid, uint32 vid, uint16 payload)
{
corb_t verb = MAKE_VERB(codec->addr, nid, vid, payload);
return hda_send_verbs(codec, &verb, NULL, 1);
}
status_t
hda_verb_read(hda_codec* codec, uint32 nid, uint32 vid, uint32* response)
{
corb_t verb = MAKE_VERB(codec->addr, nid, vid, 0);
return hda_send_verbs(codec, &verb, response, 1);
}
/*! Setup hardware for use; detect codecs; etc */
status_t
hda_hw_init(hda_controller* controller)
{
uint16 capabilities;
uint16 stateStatus;
uint16 cmd;
status_t status;
uint32 quirks = get_controller_quirks(controller->pci_info);
// Map MMIO registers
controller->regs_area = map_physical_memory("hda_hw_regs",
controller->pci_info.u.h0.base_registers[0],
controller->pci_info.u.h0.base_register_sizes[0], B_ANY_KERNEL_ADDRESS,
0, (void**)&controller->regs);
if (controller->regs_area < B_OK) {
status = controller->regs_area;
goto error;
}
cmd = (gPci->read_pci_config)(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function,
PCI_command, 2);
if (!(cmd & PCI_command_master)) {
dprintf("hda: enabling PCI bus mastering\n");
cmd |= PCI_command_master;
}
if (!(cmd & PCI_command_memory)) {
dprintf("hda: enabling PCI memory access\n");
cmd |= PCI_command_memory;
}
if ((cmd & PCI_command_int_disable)) {
dprintf("hda: enabling PCI interrupts\n");
cmd &= ~PCI_command_int_disable;
}
(gPci->write_pci_config)(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function,
PCI_command, 2, cmd);
// Absolute minimum hw is online; we can now install interrupt handler
controller->irq = controller->pci_info.u.h0.interrupt_line;
controller->msi = false;
if (gPCIx86Module != NULL && (quirks & HDA_QUIRK_NO_MSI) == 0
&& gPCIx86Module->get_msi_count(
controller->pci_info.bus, controller->pci_info.device,
controller->pci_info.function) >= 1) {
// Try MSI first
uint8 vector;
if (gPCIx86Module->configure_msi(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function,
1, &vector) == B_OK
&& gPCIx86Module->enable_msi(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function)
== B_OK) {
dprintf("hda: using MSI vector %u\n", vector);
controller->irq = vector;
controller->msi = true;
}
}
status = install_io_interrupt_handler(controller->irq,
(interrupt_handler)hda_interrupt_handler, controller, 0);
if (status != B_OK)
goto no_irq;
// TCSEL is reset to TC0 (clear 0-2 bits)
update_pci_register(controller, PCI_HDA_TCSEL, PCI_HDA_TCSEL_MASK, 0, 1);
controller->dma_snooping = false;
if ((quirks & HDA_QUIRK_SNOOP) != 0) {
switch (controller->pci_info.vendor_id) {
case PCI_VENDOR_NVIDIA:
{
controller->dma_snooping = update_pci_register(controller,
NVIDIA_HDA_TRANSREG, NVIDIA_HDA_TRANSREG_MASK,
NVIDIA_HDA_ENABLE_COHBITS, 1, true);
if (!controller->dma_snooping)
break;
controller->dma_snooping = update_pci_register(controller,
NVIDIA_HDA_ISTRM_COH, ~NVIDIA_HDA_ENABLE_COHBIT,
NVIDIA_HDA_ENABLE_COHBIT, 1, true);
if (!controller->dma_snooping)
break;
controller->dma_snooping = update_pci_register(controller,
NVIDIA_HDA_OSTRM_COH, ~NVIDIA_HDA_ENABLE_COHBIT,
NVIDIA_HDA_ENABLE_COHBIT, 1, true);
break;
}
case PCI_VENDOR_AMD:
{
controller->dma_snooping = update_pci_register(controller,
ATI_HDA_MISC_CNTR2, ATI_HDA_MISC_CNTR2_MASK,
ATI_HDA_ENABLE_SNOOP, 1, true);
break;
}
case PCI_VENDOR_INTEL:
controller->dma_snooping = update_pci_register(controller,
INTEL_SCH_HDA_DEVC, ~INTEL_SCH_HDA_DEVC_SNOOP, 0, 2, true);
break;
}
}
dprintf("hda: DMA snooping: %s\n",
controller->dma_snooping ? "yes" : "no");
capabilities = controller->Read16(HDAC_GLOBAL_CAP);
controller->num_input_streams = GLOBAL_CAP_INPUT_STREAMS(capabilities);
controller->num_output_streams = GLOBAL_CAP_OUTPUT_STREAMS(capabilities);
controller->num_bidir_streams = GLOBAL_CAP_BIDIR_STREAMS(capabilities);
// show some hw features
dprintf("hda: HDA v%d.%d, O:%" B_PRIu32 "/I:%" B_PRIu32 "/B:%" B_PRIu32
", #SDO:%d, 64bit:%s\n",
controller->Read8(HDAC_VERSION_MAJOR),
controller->Read8(HDAC_VERSION_MINOR),
controller->num_output_streams, controller->num_input_streams,
controller->num_bidir_streams,
GLOBAL_CAP_NUM_SDO(capabilities),
GLOBAL_CAP_64BIT(capabilities) ? "yes" : "no");
// Get controller into valid state
status = reset_controller(controller);
if (status != B_OK) {
dprintf("hda: reset_controller failed\n");
goto reset_failed;
}
// Setup CORB/RIRB/DMA POS
status = init_corb_rirb_pos(controller, quirks);
if (status != B_OK) {
dprintf("hda: init_corb_rirb_pos failed\n");
goto corb_rirb_failed;
}
// Don't enable codec state change interrupts. We don't handle
// them, as we want to use the STATE_STATUS register to identify
// available codecs. We'd have to clear that register in the interrupt
// handler to 'ack' the codec change.
controller->ReadModifyWrite16(HDAC_WAKE_ENABLE, HDAC_WAKE_ENABLE_MASK, 0);
// Enable controller interrupts
controller->Write32(HDAC_INTR_CONTROL, INTR_CONTROL_GLOBAL_ENABLE
| INTR_CONTROL_CONTROLLER_ENABLE);
snooze(1000);
stateStatus = controller->Read16(HDAC_STATE_STATUS);
if (!stateStatus) {
dprintf("hda: bad codec status\n");
status = ENODEV;
goto corb_rirb_failed;
}
controller->Write16(HDAC_STATE_STATUS, stateStatus);
// Create codecs
for (uint32 index = 0; index < HDA_MAX_CODECS; index++) {
if ((stateStatus & (1 << index)) != 0)
hda_codec_new(controller, index);
}
for (uint32 index = 0; index < HDA_MAX_CODECS; index++) {
if (controller->codecs[index]
&& controller->codecs[index]->num_audio_groups > 0) {
controller->active_codec = controller->codecs[index];
break;
}
}
controller->buffer_ready_sem = create_sem(0, "hda_buffer_sem");
if (controller->buffer_ready_sem < B_OK) {
dprintf("hda: failed to create semaphore\n");
status = ENODEV;
goto corb_rirb_failed;
}
if (controller->active_codec != NULL)
return B_OK;
dprintf("hda: no active codec\n");
status = ENODEV;
delete_sem(controller->buffer_ready_sem);
corb_rirb_failed:
controller->Write32(HDAC_INTR_CONTROL, 0);
reset_failed:
if (controller->msi) {
gPCIx86Module->disable_msi(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function);
}
remove_io_interrupt_handler(controller->irq,
(interrupt_handler)hda_interrupt_handler, controller);
no_irq:
delete_area(controller->regs_area);
controller->regs_area = B_ERROR;
controller->regs = NULL;
error:
dprintf("hda: ERROR: %s(%" B_PRIx32 ")\n", strerror(status), status);
return status;
}
/*! Stop any activity */
void
hda_hw_stop(hda_controller* controller)
{
// Stop all audio streams
for (uint32 index = 0; index < HDA_MAX_STREAMS; index++) {
if (controller->streams[index] && controller->streams[index]->running)
hda_stream_stop(controller, controller->streams[index]);
}
}
/*! Free resources */
void
hda_hw_uninit(hda_controller* controller)
{
if (controller == NULL)
return;
// Stop all audio streams
hda_hw_stop(controller);
if (controller->buffer_ready_sem >= B_OK) {
delete_sem(controller->buffer_ready_sem);
controller->buffer_ready_sem = B_ERROR;
}
reset_controller(controller);
// Disable interrupts, and remove interrupt handler
controller->Write32(HDAC_INTR_CONTROL, 0);
if (controller->msi) {
// Disable MSI
gPCIx86Module->disable_msi(controller->pci_info.bus,
controller->pci_info.device, controller->pci_info.function);
}
remove_io_interrupt_handler(controller->irq,
(interrupt_handler)hda_interrupt_handler, controller);
if (gPCIx86Module != NULL) {
put_module(B_PCI_X86_MODULE_NAME);
gPCIx86Module = NULL;
}
// Delete corb/rirb area
if (controller->corb_rirb_pos_area >= 0) {
delete_area(controller->corb_rirb_pos_area);
controller->corb_rirb_pos_area = B_ERROR;
controller->corb = NULL;
controller->rirb = NULL;
controller->stream_positions = NULL;
}
// Unmap registers
if (controller->regs_area >= 0) {
delete_area(controller->regs_area);
controller->regs_area = B_ERROR;
controller->regs = NULL;
}
// Now delete all codecs
for (uint32 index = 0; index < HDA_MAX_CODECS; index++) {
if (controller->codecs[index] != NULL)
hda_codec_delete(controller->codecs[index]);
}
controller->active_codec = NULL;
}
↑ V595 The 'gPCIx86Module' pointer was utilized before it was verified against nullptr. Check lines: 1224, 1231.