/******************************************************************************
*
* Module Name: dswload - Dispatcher first pass namespace load callbacks
*
*****************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999 - 2018, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************
*
* Alternatively, you may choose to be licensed under the terms of the
* following license:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Alternatively, you may choose to be licensed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
*****************************************************************************/
#include "acpi.h"
#include "accommon.h"
#include "acparser.h"
#include "amlcode.h"
#include "acdispat.h"
#include "acinterp.h"
#include "acnamesp.h"
#ifdef ACPI_ASL_COMPILER
#include "acdisasm.h"
#endif
#define _COMPONENT ACPI_DISPATCHER
ACPI_MODULE_NAME ("dswload")
/*******************************************************************************
*
* FUNCTION: AcpiDsInitCallbacks
*
* PARAMETERS: WalkState - Current state of the parse tree walk
* PassNumber - 1, 2, or 3
*
* RETURN: Status
*
* DESCRIPTION: Init walk state callbacks
*
******************************************************************************/
ACPI_STATUS
AcpiDsInitCallbacks (
ACPI_WALK_STATE *WalkState,
UINT32 PassNumber)
{
switch (PassNumber)
{
case 0:
/* Parse only - caller will setup callbacks */
WalkState->ParseFlags = ACPI_PARSE_LOAD_PASS1 |
ACPI_PARSE_DELETE_TREE |
ACPI_PARSE_DISASSEMBLE;
WalkState->DescendingCallback = NULL;
WalkState->AscendingCallback = NULL;
break;
case 1:
/* Load pass 1 */
WalkState->ParseFlags = ACPI_PARSE_LOAD_PASS1 |
ACPI_PARSE_DELETE_TREE;
WalkState->DescendingCallback = AcpiDsLoad1BeginOp;
WalkState->AscendingCallback = AcpiDsLoad1EndOp;
break;
case 2:
/* Load pass 2 */
WalkState->ParseFlags = ACPI_PARSE_LOAD_PASS1 |
ACPI_PARSE_DELETE_TREE;
WalkState->DescendingCallback = AcpiDsLoad2BeginOp;
WalkState->AscendingCallback = AcpiDsLoad2EndOp;
break;
case 3:
/* Execution pass */
WalkState->ParseFlags |= ACPI_PARSE_EXECUTE |
ACPI_PARSE_DELETE_TREE;
WalkState->DescendingCallback = AcpiDsExecBeginOp;
WalkState->AscendingCallback = AcpiDsExecEndOp;
break;
default:
return (AE_BAD_PARAMETER);
}
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: AcpiDsLoad1BeginOp
*
* PARAMETERS: WalkState - Current state of the parse tree walk
* OutOp - Where to return op if a new one is created
*
* RETURN: Status
*
* DESCRIPTION: Descending callback used during the loading of ACPI tables.
*
******************************************************************************/
ACPI_STATUS
AcpiDsLoad1BeginOp (
ACPI_WALK_STATE *WalkState,
ACPI_PARSE_OBJECT **OutOp)
{
ACPI_PARSE_OBJECT *Op;
ACPI_NAMESPACE_NODE *Node;
ACPI_STATUS Status;
ACPI_OBJECT_TYPE ObjectType;
char *Path;
UINT32 Flags;
ACPI_FUNCTION_TRACE_PTR (DsLoad1BeginOp, WalkState->Op);
Op = WalkState->Op;
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op=%p State=%p\n", Op, WalkState));
/* We are only interested in opcodes that have an associated name */
if (Op)
{
if (!(WalkState->OpInfo->Flags & AML_NAMED))
{
*OutOp = Op;
return_ACPI_STATUS (AE_OK);
}
/* Check if this object has already been installed in the namespace */
if (Op->Common.Node)
{
*OutOp = Op;
return_ACPI_STATUS (AE_OK);
}
}
Path = AcpiPsGetNextNamestring (&WalkState->ParserState);
/* Map the raw opcode into an internal object type */
ObjectType = WalkState->OpInfo->ObjectType;
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
"State=%p Op=%p [%s]\n", WalkState, Op,
AcpiUtGetTypeName (ObjectType)));
switch (WalkState->Opcode)
{
case AML_SCOPE_OP:
/*
* The target name of the Scope() operator must exist at this point so
* that we can actually open the scope to enter new names underneath it.
* Allow search-to-root for single namesegs.
*/
Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType,
ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState, &(Node));
#ifdef ACPI_ASL_COMPILER
if (Status == AE_NOT_FOUND)
{
/*
* Table disassembly:
* Target of Scope() not found. Generate an External for it, and
* insert the name into the namespace.
*/
AcpiDmAddOpToExternalList (Op, Path, ACPI_TYPE_DEVICE, 0, 0);
Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType,
ACPI_IMODE_LOAD_PASS1, ACPI_NS_SEARCH_PARENT,
WalkState, &Node);
}
#endif
if (ACPI_FAILURE (Status))
{
ACPI_ERROR_NAMESPACE (WalkState->ScopeInfo, Path, Status);
return_ACPI_STATUS (Status);
}
/*
* Check to make sure that the target is
* one of the opcodes that actually opens a scope
*/
switch (Node->Type)
{
case ACPI_TYPE_ANY:
case ACPI_TYPE_LOCAL_SCOPE: /* Scope */
case ACPI_TYPE_DEVICE:
case ACPI_TYPE_POWER:
case ACPI_TYPE_PROCESSOR:
case ACPI_TYPE_THERMAL:
/* These are acceptable types */
break;
case ACPI_TYPE_INTEGER:
case ACPI_TYPE_STRING:
case ACPI_TYPE_BUFFER:
/*
* These types we will allow, but we will change the type.
* This enables some existing code of the form:
*
* Name (DEB, 0)
* Scope (DEB) { ... }
*
* Note: silently change the type here. On the second pass,
* we will report a warning
*/
ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
"Type override - [%4.4s] had invalid type (%s) "
"for Scope operator, changed to type ANY\n",
AcpiUtGetNodeName (Node), AcpiUtGetTypeName (Node->Type)));
Node->Type = ACPI_TYPE_ANY;
WalkState->ScopeInfo->Common.Value = ACPI_TYPE_ANY;
break;
case ACPI_TYPE_METHOD:
/*
* Allow scope change to root during execution of module-level
* code. Root is typed METHOD during this time.
*/
if ((Node == AcpiGbl_RootNode) &&
(WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL))
{
break;
}
/*lint -fallthrough */
default:
/* All other types are an error */
ACPI_ERROR ((AE_INFO,
"Invalid type (%s) for target of "
"Scope operator [%4.4s] (Cannot override)",
AcpiUtGetTypeName (Node->Type), AcpiUtGetNodeName (Node)));
return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
}
break;
default:
/*
* For all other named opcodes, we will enter the name into
* the namespace.
*
* Setup the search flags.
* Since we are entering a name into the namespace, we do not want to
* enable the search-to-root upsearch.
*
* There are only two conditions where it is acceptable that the name
* already exists:
* 1) the Scope() operator can reopen a scoping object that was
* previously defined (Scope, Method, Device, etc.)
* 2) Whenever we are parsing a deferred opcode (OpRegion, Buffer,
* BufferField, or Package), the name of the object is already
* in the namespace.
*/
if (WalkState->DeferredNode)
{
/* This name is already in the namespace, get the node */
Node = WalkState->DeferredNode;
Status = AE_OK;
break;
}
/*
* If we are executing a method, do not create any namespace objects
* during the load phase, only during execution.
*/
if (WalkState->MethodNode)
{
Node = NULL;
Status = AE_OK;
break;
}
Flags = ACPI_NS_NO_UPSEARCH;
if ((WalkState->Opcode != AML_SCOPE_OP) &&
(!(WalkState->ParseFlags & ACPI_PARSE_DEFERRED_OP)))
{
if (WalkState->NamespaceOverride)
{
Flags |= ACPI_NS_OVERRIDE_IF_FOUND;
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "[%s] Override allowed\n",
AcpiUtGetTypeName (ObjectType)));
}
else
{
Flags |= ACPI_NS_ERROR_IF_FOUND;
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "[%s] Cannot already exist\n",
AcpiUtGetTypeName (ObjectType)));
}
}
else
{
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
"[%s] Both Find or Create allowed\n",
AcpiUtGetTypeName (ObjectType)));
}
/*
* Enter the named type into the internal namespace. We enter the name
* as we go downward in the parse tree. Any necessary subobjects that
* involve arguments to the opcode must be created as we go back up the
* parse tree later.
*/
Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType,
ACPI_IMODE_LOAD_PASS1, Flags, WalkState, &Node);
if (ACPI_FAILURE (Status))
{
if (Status == AE_ALREADY_EXISTS)
{
/* The name already exists in this scope */
if (Node->Flags & ANOBJ_IS_EXTERNAL)
{
/*
* Allow one create on an object or segment that was
* previously declared External
*/
Node->Flags &= ~ANOBJ_IS_EXTERNAL;
Node->Type = (UINT8) ObjectType;
/* Just retyped a node, probably will need to open a scope */
if (AcpiNsOpensScope (ObjectType))
{
Status = AcpiDsScopeStackPush (
Node, ObjectType, WalkState);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
}
Status = AE_OK;
}
}
if (ACPI_FAILURE (Status))
{
ACPI_ERROR_NAMESPACE (WalkState->ScopeInfo, Path, Status);
return_ACPI_STATUS (Status);
}
}
break;
}
/* Common exit */
if (!Op)
{
/* Create a new op */
Op = AcpiPsAllocOp (WalkState->Opcode, WalkState->Aml);
if (!Op)
{
return_ACPI_STATUS (AE_NO_MEMORY);
}
}
/* Initialize the op */
#ifdef ACPI_CONSTANT_EVAL_ONLY
Op->Named.Path = Path;
#endif
if (Node)
{
/*
* Put the Node in the "op" object that the parser uses, so we
* can get it again quickly when this scope is closed
*/
Op->Common.Node = Node;
Op->Named.Name = Node->Name.Integer;
}
AcpiPsAppendArg (AcpiPsGetParentScope (&WalkState->ParserState), Op);
*OutOp = Op;
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiDsLoad1EndOp
*
* PARAMETERS: WalkState - Current state of the parse tree walk
*
* RETURN: Status
*
* DESCRIPTION: Ascending callback used during the loading of the namespace,
* both control methods and everything else.
*
******************************************************************************/
ACPI_STATUS
AcpiDsLoad1EndOp (
ACPI_WALK_STATE *WalkState)
{
ACPI_PARSE_OBJECT *Op;
ACPI_OBJECT_TYPE ObjectType;
ACPI_STATUS Status = AE_OK;
#ifdef ACPI_ASL_COMPILER
UINT8 ParamCount;
#endif
ACPI_FUNCTION_TRACE (DsLoad1EndOp);
Op = WalkState->Op;
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op=%p State=%p\n", Op, WalkState));
/* We are only interested in opcodes that have an associated name */
if (!(WalkState->OpInfo->Flags & (AML_NAMED | AML_FIELD)))
{
return_ACPI_STATUS (AE_OK);
}
/* Get the object type to determine if we should pop the scope */
ObjectType = WalkState->OpInfo->ObjectType;
if (WalkState->OpInfo->Flags & AML_FIELD)
{
/*
* If we are executing a method, do not create any namespace objects
* during the load phase, only during execution.
*/
if (!WalkState->MethodNode)
{
if (WalkState->Opcode == AML_FIELD_OP ||
WalkState->Opcode == AML_BANK_FIELD_OP ||
WalkState->Opcode == AML_INDEX_FIELD_OP)
{
Status = AcpiDsInitFieldObjects (Op, WalkState);
}
}
return_ACPI_STATUS (Status);
}
/*
* If we are executing a method, do not create any namespace objects
* during the load phase, only during execution.
*/
if (!WalkState->MethodNode)
{
if (Op->Common.AmlOpcode == AML_REGION_OP)
{
Status = AcpiExCreateRegion (Op->Named.Data, Op->Named.Length,
(ACPI_ADR_SPACE_TYPE)
((Op->Common.Value.Arg)->Common.Value.Integer),
WalkState);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
}
else if (Op->Common.AmlOpcode == AML_DATA_REGION_OP)
{
Status = AcpiExCreateRegion (Op->Named.Data, Op->Named.Length,
ACPI_ADR_SPACE_DATA_TABLE, WalkState);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
}
}
if (Op->Common.AmlOpcode == AML_NAME_OP)
{
/* For Name opcode, get the object type from the argument */
if (Op->Common.Value.Arg)
{
ObjectType = (AcpiPsGetOpcodeInfo (
(Op->Common.Value.Arg)->Common.AmlOpcode))->ObjectType;
/* Set node type if we have a namespace node */
if (Op->Common.Node)
{
Op->Common.Node->Type = (UINT8) ObjectType;
}
}
}
#ifdef ACPI_ASL_COMPILER
/*
* For external opcode, get the object type from the argument and
* get the parameter count from the argument's next.
*/
if (AcpiGbl_DisasmFlag &&
Op->Common.Node &&
Op->Common.AmlOpcode == AML_EXTERNAL_OP)
{
/*
* Note, if this external is not a method
* Op->Common.Value.Arg->Common.Next->Common.Value.Integer == 0
* Therefore, ParamCount will be 0.
*/
ParamCount = (UINT8) Op->Common.Value.Arg->Common.Next->Common.Value.Integer;
ObjectType = (UINT8) Op->Common.Value.Arg->Common.Value.Integer;
Op->Common.Node->Flags |= ANOBJ_IS_EXTERNAL;
Op->Common.Node->Type = (UINT8) ObjectType;
AcpiDmCreateSubobjectForExternal ((UINT8)ObjectType,
&Op->Common.Node, ParamCount);
/*
* Add the external to the external list because we may be
* emitting code based off of the items within the external list.
*/
AcpiDmAddOpToExternalList (Op, Op->Named.Path, (UINT8)ObjectType, ParamCount,
ACPI_EXT_ORIGIN_FROM_OPCODE | ACPI_EXT_RESOLVED_REFERENCE);
}
#endif
/*
* If we are executing a method, do not create any namespace objects
* during the load phase, only during execution.
*/
if (!WalkState->MethodNode)
{
if (Op->Common.AmlOpcode == AML_METHOD_OP)
{
/*
* MethodOp PkgLength NameString MethodFlags TermList
*
* Note: We must create the method node/object pair as soon as we
* see the method declaration. This allows later pass1 parsing
* of invocations of the method (need to know the number of
* arguments.)
*/
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH,
"LOADING-Method: State=%p Op=%p NamedObj=%p\n",
WalkState, Op, Op->Named.Node));
if (!AcpiNsGetAttachedObject (Op->Named.Node))
{
WalkState->Operands[0] = ACPI_CAST_PTR (void, Op->Named.Node);
WalkState->NumOperands = 1;
Status = AcpiDsCreateOperands (
WalkState, Op->Common.Value.Arg);
if (ACPI_SUCCESS (Status))
{
Status = AcpiExCreateMethod (Op->Named.Data,
Op->Named.Length, WalkState);
}
WalkState->Operands[0] = NULL;
WalkState->NumOperands = 0;
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
}
}
}
/* Pop the scope stack (only if loading a table) */
if (!WalkState->MethodNode &&
Op->Common.AmlOpcode != AML_EXTERNAL_OP &&
AcpiNsOpensScope (ObjectType))
{
ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "(%s): Popping scope for Op %p\n",
AcpiUtGetTypeName (ObjectType), Op));
Status = AcpiDsScopeStackPop (WalkState);
}
return_ACPI_STATUS (Status);
}
↑ V595 The 'Op->Common.Value.Arg' pointer was utilized before it was verified against nullptr. Check lines: 609, 631.