/* second CTRC functionality for GeForce cards */
/* Author:
Rudolf Cornelissen 11/2002-9/2004
*/
#define MODULE_BIT 0x00020000
#include "std.h"
/*Adjust passed parameters to a valid mode line*/
status_t eng_crtc2_validate_timing(
uint16 *hd_e,uint16 *hs_s,uint16 *hs_e,uint16 *ht,
uint16 *vd_e,uint16 *vs_s,uint16 *vs_e,uint16 *vt
)
{
/* horizontal */
/* make all parameters multiples of 8 */
*hd_e &= 0xfff8;
*hs_s &= 0xfff8;
*hs_e &= 0xfff8;
*ht &= 0xfff8;
/* confine to required number of bits, taking logic into account */
if (*hd_e > ((0x01ff - 2) << 3)) *hd_e = ((0x01ff - 2) << 3);
if (*hs_s > ((0x01ff - 1) << 3)) *hs_s = ((0x01ff - 1) << 3);
if (*hs_e > ( 0x01ff << 3)) *hs_e = ( 0x01ff << 3);
if (*ht > ((0x01ff + 5) << 3)) *ht = ((0x01ff + 5) << 3);
/* NOTE: keep horizontal timing at multiples of 8! */
/* confine to a reasonable width */
if (*hd_e < 640) *hd_e = 640;
if (*hd_e > 2048) *hd_e = 2048;
/* if hor. total does not leave room for a sensible sync pulse, increase it! */
if (*ht < (*hd_e + 80)) *ht = (*hd_e + 80);
/* if hor. total does not adhere to max. blanking pulse width, decrease it! */
if (*ht > (*hd_e + 0x3f8)) *ht = (*hd_e + 0x3f8);
/* make sure sync pulse is not during display */
if (*hs_e > (*ht - 8)) *hs_e = (*ht - 8);
if (*hs_s < (*hd_e + 8)) *hs_s = (*hd_e + 8);
/* correct sync pulse if it is too long:
* there are only 5 bits available to save this in the card registers! */
if (*hs_e > (*hs_s + 0xf8)) *hs_e = (*hs_s + 0xf8);
/*vertical*/
/* confine to required number of bits, taking logic into account */
//fixme if needed: on GeForce cards there are 12 instead of 11 bits...
if (*vd_e > (0x7ff - 2)) *vd_e = (0x7ff - 2);
if (*vs_s > (0x7ff - 1)) *vs_s = (0x7ff - 1);
if (*vs_e > 0x7ff ) *vs_e = 0x7ff ;
if (*vt > (0x7ff + 2)) *vt = (0x7ff + 2);
/* confine to a reasonable height */
if (*vd_e < 480) *vd_e = 480;
if (*vd_e > 1536) *vd_e = 1536;
/*if vertical total does not leave room for a sync pulse, increase it!*/
if (*vt < (*vd_e + 3)) *vt = (*vd_e + 3);
/* if vert. total does not adhere to max. blanking pulse width, decrease it! */
if (*vt > (*vd_e + 0xff)) *vt = (*vd_e + 0xff);
/* make sure sync pulse is not during display */
if (*vs_e > (*vt - 1)) *vs_e = (*vt - 1);
if (*vs_s < (*vd_e + 1)) *vs_s = (*vd_e + 1);
/* correct sync pulse if it is too long:
* there are only 4 bits available to save this in the card registers! */
if (*vs_e > (*vs_s + 0x0f)) *vs_e = (*vs_s + 0x0f);
return B_OK;
}
/*set a mode line - inputs are in pixels*/
status_t eng_crtc2_set_timing(display_mode target)
{
uint8 temp;
uint32 htotal; /*total horizontal total VCLKs*/
uint32 hdisp_e; /*end of horizontal display (begins at 0)*/
uint32 hsync_s; /*begin of horizontal sync pulse*/
uint32 hsync_e; /*end of horizontal sync pulse*/
uint32 hblnk_s; /*begin horizontal blanking*/
uint32 hblnk_e; /*end horizontal blanking*/
uint32 vtotal; /*total vertical total scanlines*/
uint32 vdisp_e; /*end of vertical display*/
uint32 vsync_s; /*begin of vertical sync pulse*/
uint32 vsync_e; /*end of vertical sync pulse*/
uint32 vblnk_s; /*begin vertical blanking*/
uint32 vblnk_e; /*end vertical blanking*/
uint32 linecomp; /*split screen and vdisp_e interrupt*/
LOG(4,("CRTC2: setting timing\n"));
/* setup tuned internal modeline for flatpanel if connected and active */
/* notes:
* - the CRTC modeline must end earlier than the panel modeline to keep correct
* sync going;
* - if the CRTC modeline ends too soon, pixelnoise will occur in 8 (or so) pixel
* wide horizontal stripes. This can be observed earliest on fullscreen overlay,
* and if it gets worse, also normal desktop output will suffer. The stripes
* are mainly visible at the left of the screen, over the entire screen height. */
if (si->ps.tmds2_active)
{
LOG(2,("CRTC2: DFP active: tuning modeline\n"));
/* horizontal timing */
target.timing.h_sync_start =
((uint16)((si->ps.p2_timing.h_sync_start / ((float)si->ps.p2_timing.h_display)) *
target.timing.h_display)) & 0xfff8;
target.timing.h_sync_end =
((uint16)((si->ps.p2_timing.h_sync_end / ((float)si->ps.p2_timing.h_display)) *
target.timing.h_display)) & 0xfff8;
target.timing.h_total =
(((uint16)((si->ps.p2_timing.h_total / ((float)si->ps.p2_timing.h_display)) *
target.timing.h_display)) & 0xfff8) - 8;
/* in native mode the CRTC needs some extra time to keep synced correctly;
* OTOH the overlay unit distorts if we reserve too much time! */
if (target.timing.h_display == si->ps.p2_timing.h_display)
{
/* NV11 timing has different constraints than later cards */
if (si->ps.card_type == NV11)
target.timing.h_total -= 56;
else
/* confirmed NV34 with 1680x1050 panel */
target.timing.h_total -= 32;
}
if (target.timing.h_sync_start == target.timing.h_display)
target.timing.h_sync_start += 8;
if (target.timing.h_sync_end == target.timing.h_total)
target.timing.h_sync_end -= 8;
/* vertical timing */
target.timing.v_sync_start =
((uint16)((si->ps.p2_timing.v_sync_start / ((float)si->ps.p2_timing.v_display)) *
target.timing.v_display));
target.timing.v_sync_end =
((uint16)((si->ps.p2_timing.v_sync_end / ((float)si->ps.p2_timing.v_display)) *
target.timing.v_display));
target.timing.v_total =
((uint16)((si->ps.p2_timing.v_total / ((float)si->ps.p2_timing.v_display)) *
target.timing.v_display)) - 1;
if (target.timing.v_sync_start == target.timing.v_display)
target.timing.v_sync_start += 1;
if (target.timing.v_sync_end == target.timing.v_total)
target.timing.v_sync_end -= 1;
/* disable GPU scaling testmode so automatic scaling will be done */
DAC2W(FP_DEBUG1, 0);
}
/* Modify parameters as required by standard VGA */
htotal = ((target.timing.h_total >> 3) - 5);
hdisp_e = ((target.timing.h_display >> 3) - 1);
hblnk_s = hdisp_e;
hblnk_e = (htotal + 4);//0;
hsync_s = (target.timing.h_sync_start >> 3);
hsync_e = (target.timing.h_sync_end >> 3);
vtotal = target.timing.v_total - 2;
vdisp_e = target.timing.v_display - 1;
vblnk_s = vdisp_e;
vblnk_e = (vtotal + 1);
vsync_s = target.timing.v_sync_start;//-1;
vsync_e = target.timing.v_sync_end;//-1;
/* prevent memory adress counter from being reset (linecomp may not occur) */
linecomp = target.timing.v_display;
/* enable access to secondary head */
set_crtc_owner(1);
/* Note for laptop and DVI flatpanels:
* CRTC timing has a seperate set of registers from flatpanel timing.
* The flatpanel timing registers have scaling registers that are used to match
* these two modelines. */
{
LOG(4,("CRTC2: Setting full timing...\n"));
/* log the mode that will be set */
LOG(2,("CRTC2:\n\tHTOT:%x\n\tHDISPEND:%x\n\tHBLNKS:%x\n\tHBLNKE:%x\n\tHSYNCS:%x\n\tHSYNCE:%x\n\t",htotal,hdisp_e,hblnk_s,hblnk_e,hsync_s,hsync_e));
LOG(2,("VTOT:%x\n\tVDISPEND:%x\n\tVBLNKS:%x\n\tVBLNKE:%x\n\tVSYNCS:%x\n\tVSYNCE:%x\n",vtotal,vdisp_e,vblnk_s,vblnk_e,vsync_s,vsync_e));
/* actually program the card! */
/* unlock CRTC registers at index 0-7 */
CRTC2W(VSYNCE, (CRTC2R(VSYNCE) & 0x7f));
/* horizontal standard VGA regs */
CRTC2W(HTOTAL, (htotal & 0xff));
CRTC2W(HDISPE, (hdisp_e & 0xff));
CRTC2W(HBLANKS, (hblnk_s & 0xff));
/* also unlock vertical retrace registers in advance */
CRTC2W(HBLANKE, ((hblnk_e & 0x1f) | 0x80));
CRTC2W(HSYNCS, (hsync_s & 0xff));
CRTC2W(HSYNCE, ((hsync_e & 0x1f) | ((hblnk_e & 0x20) << 2)));
/* vertical standard VGA regs */
CRTC2W(VTOTAL, (vtotal & 0xff));
CRTC2W(OVERFLOW,
(
((vtotal & 0x100) >> (8 - 0)) | ((vtotal & 0x200) >> (9 - 5)) |
((vdisp_e & 0x100) >> (8 - 1)) | ((vdisp_e & 0x200) >> (9 - 6)) |
((vsync_s & 0x100) >> (8 - 2)) | ((vsync_s & 0x200) >> (9 - 7)) |
((vblnk_s & 0x100) >> (8 - 3)) | ((linecomp & 0x100) >> (8 - 4))
));
CRTC2W(PRROWSCN, 0x00); /* not used */
CRTC2W(MAXSCLIN, (((vblnk_s & 0x200) >> (9 - 5)) | ((linecomp & 0x200) >> (9 - 6))));
CRTC2W(VSYNCS, (vsync_s & 0xff));
CRTC2W(VSYNCE, ((CRTC2R(VSYNCE) & 0xf0) | (vsync_e & 0x0f)));
CRTC2W(VDISPE, (vdisp_e & 0xff));
CRTC2W(VBLANKS, (vblnk_s & 0xff));
CRTC2W(VBLANKE, (vblnk_e & 0xff));
CRTC2W(LINECOMP, (linecomp & 0xff));
/* horizontal extended regs */
//fixme: we reset bit4. is this correct??
CRTC2W(HEB, (CRTC2R(HEB) & 0xe0) |
(
((htotal & 0x100) >> (8 - 0)) |
((hdisp_e & 0x100) >> (8 - 1)) |
((hblnk_s & 0x100) >> (8 - 2)) |
((hsync_s & 0x100) >> (8 - 3))
));
/* (mostly) vertical extended regs */
CRTC2W(LSR,
(
((vtotal & 0x400) >> (10 - 0)) |
((vdisp_e & 0x400) >> (10 - 1)) |
((vsync_s & 0x400) >> (10 - 2)) |
((vblnk_s & 0x400) >> (10 - 3)) |
((hblnk_e & 0x040) >> (6 - 4))
//fixme: we still miss one linecomp bit!?! is this it??
//| ((linecomp & 0x400) >> 3)
));
/* more vertical extended regs */
CRTC2W(EXTRA,
(
((vtotal & 0x800) >> (11 - 0)) |
((vdisp_e & 0x800) >> (11 - 2)) |
((vsync_s & 0x800) >> (11 - 4)) |
((vblnk_s & 0x800) >> (11 - 6))
//fixme: do we miss another linecomp bit!?!
));
/* setup 'large screen' mode */
if (target.timing.h_display >= 1280)
CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0xfb));
else
CRTC2W(REPAINT1, (CRTC2R(REPAINT1) | 0x04));
/* setup HSYNC & VSYNC polarity */
LOG(2,("CRTC2: sync polarity: "));
temp = ENG_REG8(RG8_MISCR);
if (target.timing.flags & B_POSITIVE_HSYNC)
{
LOG(2,("H:pos "));
temp &= ~0x40;
}
else
{
LOG(2,("H:neg "));
temp |= 0x40;
}
if (target.timing.flags & B_POSITIVE_VSYNC)
{
LOG(2,("V:pos "));
temp &= ~0x80;
}
else
{
LOG(2,("V:neg "));
temp |= 0x80;
}
ENG_REG8(RG8_MISCW) = temp;
LOG(2,(", MISC reg readback: $%02x\n", ENG_REG8(RG8_MISCR)));
}
/* always disable interlaced operation */
/* (interlace is supported on upto and including NV10, NV15, and NV30 and up) */
CRTC2W(INTERLACE, 0xff);
/* disable CRTC slaved mode unless a panel is in use */
// fixme: this kills TVout when it was in use...
if (!si->ps.tmds2_active) CRTC2W(PIXEL, (CRTC2R(PIXEL) & 0x7f));
/* setup flatpanel if connected and active */
if (si->ps.tmds2_active)
{
uint32 iscale_x, iscale_y;
/* calculate inverse scaling factors used by hardware in 20.12 format */
iscale_x = (((1 << 12) * target.timing.h_display) / si->ps.p2_timing.h_display);
iscale_y = (((1 << 12) * target.timing.v_display) / si->ps.p2_timing.v_display);
/* unblock flatpanel timing programming (or something like that..) */
CRTC2W(FP_HTIMING, 0);
CRTC2W(FP_VTIMING, 0);
LOG(2,("CRTC2: FP_HTIMING reg readback: $%02x\n", CRTC2R(FP_HTIMING)));
LOG(2,("CRTC2: FP_VTIMING reg readback: $%02x\n", CRTC2R(FP_VTIMING)));
/* enable full width visibility on flatpanel */
DAC2W(FP_HVALID_S, 0);
DAC2W(FP_HVALID_E, (si->ps.p2_timing.h_display - 1));
/* enable full height visibility on flatpanel */
DAC2W(FP_VVALID_S, 0);
DAC2W(FP_VVALID_E, (si->ps.p2_timing.v_display - 1));
/* nVidia cards support upscaling except on ??? */
/* NV11 cards can upscale after all! */
if (0)//si->ps.card_type == NV11)
{
/* disable last fetched line limiting */
DAC2W(FP_DEBUG2, 0x00000000);
/* inform panel to scale if needed */
if ((iscale_x != (1 << 12)) || (iscale_y != (1 << 12)))
{
LOG(2,("CRTC2: DFP needs to do scaling\n"));
DAC2W(FP_TG_CTRL, (DAC2R(FP_TG_CTRL) | 0x00000100));
}
else
{
LOG(2,("CRTC2: no scaling for DFP needed\n"));
DAC2W(FP_TG_CTRL, (DAC2R(FP_TG_CTRL) & 0xfffffeff));
}
}
else
{
float dm_aspect;
LOG(2,("CRTC2: GPU scales for DFP if needed\n"));
/* calculate display mode aspect */
dm_aspect = (target.timing.h_display / ((float)target.timing.v_display));
/* limit last fetched line if vertical scaling is done */
if (iscale_y != (1 << 12))
DAC2W(FP_DEBUG2, ((1 << 28) | ((target.timing.v_display - 1) << 16)));
else
DAC2W(FP_DEBUG2, 0x00000000);
/* inform panel not to scale */
DAC2W(FP_TG_CTRL, (DAC2R(FP_TG_CTRL) & 0xfffffeff));
/* GPU scaling is automatically setup by hardware, so only modify this
* scalingfactor for non 4:3 (1.33) aspect panels;
* let's consider 1280x1024 1:33 aspect (it's 1.25 aspect actually!) */
/* correct for widescreen panels relative to mode...
* (so if panel is more widescreen than mode being set) */
/* BTW: known widescreen panels:
* 1280 x 800 (1.60),
* 1440 x 900 (1.60),
* 1680 x 1050 (1.60),
* 1920 x 1200 (1.60). */
/* known 4:3 aspect non-standard resolution panels:
* 1400 x 1050 (1.33). */
/* NOTE:
* allow 0.10 difference so 1280x1024 panels will be used fullscreen! */
if ((iscale_x != (1 << 12)) && (si->ps.panel2_aspect > (dm_aspect + 0.10)))
{
uint16 diff;
LOG(2,("CRTC2: (relative) widescreen panel: tuning horizontal scaling\n"));
/* X-scaling should be the same as Y-scaling */
iscale_x = iscale_y;
/* enable testmode (b12) and program new X-scaling factor */
DAC2W(FP_DEBUG1, (((iscale_x >> 1) & 0x00000fff) | (1 << 12)));
/* center/cut-off left and right side of screen */
diff = ((si->ps.p2_timing.h_display -
(target.timing.h_display * ((1 << 12) / ((float)iscale_x))))
/ 2);
DAC2W(FP_HVALID_S, diff);
DAC2W(FP_HVALID_E, ((si->ps.p2_timing.h_display - diff) - 1));
}
/* correct for portrait panels... */
/* NOTE:
* allow 0.10 difference so 1280x1024 panels will be used fullscreen! */
if ((iscale_y != (1 << 12)) && (si->ps.panel2_aspect < (dm_aspect - 0.10)))
{
LOG(2,("CRTC2: (relative) portrait panel: should tune vertical scaling\n"));
/* fixme: implement if this kind of portrait panels exist on nVidia... */
}
}
/* do some logging.. */
LOG(2,("CRTC2: FP_HVALID_S reg readback: $%08x\n", DAC2R(FP_HVALID_S)));
LOG(2,("CRTC2: FP_HVALID_E reg readback: $%08x\n", DAC2R(FP_HVALID_E)));
LOG(2,("CRTC2: FP_VVALID_S reg readback: $%08x\n", DAC2R(FP_VVALID_S)));
LOG(2,("CRTC2: FP_VVALID_E reg readback: $%08x\n", DAC2R(FP_VVALID_E)));
LOG(2,("CRTC2: FP_DEBUG0 reg readback: $%08x\n", DAC2R(FP_DEBUG0)));
LOG(2,("CRTC2: FP_DEBUG1 reg readback: $%08x\n", DAC2R(FP_DEBUG1)));
LOG(2,("CRTC2: FP_DEBUG2 reg readback: $%08x\n", DAC2R(FP_DEBUG2)));
LOG(2,("CRTC2: FP_DEBUG3 reg readback: $%08x\n", DAC2R(FP_DEBUG3)));
LOG(2,("CRTC2: FP_TG_CTRL reg readback: $%08x\n", DAC2R(FP_TG_CTRL)));
}
return B_OK;
}
status_t eng_crtc2_depth(int mode)
{
uint8 viddelay = 0;
uint32 genctrl = 0;
/* set VCLK scaling */
switch(mode)
{
case BPP8:
viddelay = 0x01;
/* genctrl b4 & b5 reset: 'direct mode' */
genctrl = 0x00101100;
break;
case BPP15:
viddelay = 0x02;
/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
genctrl = 0x00100130;
break;
case BPP16:
viddelay = 0x02;
/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
genctrl = 0x00101130;
break;
case BPP24:
viddelay = 0x03;
/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
genctrl = 0x00100130;
break;
case BPP32:
viddelay = 0x03;
/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
genctrl = 0x00101130;
break;
}
/* enable access to secondary head */
set_crtc_owner(1);
CRTC2W(PIXEL, ((CRTC2R(PIXEL) & 0xfc) | viddelay));
DAC2W(GENCTRL, genctrl);
return B_OK;
}
status_t eng_crtc2_dpms(bool display, bool h, bool v)
{
uint8 temp;
LOG(4,("CRTC2: setting DPMS: "));
/* enable access to secondary head */
set_crtc_owner(1);
/* start synchronous reset: required before turning screen off! */
SEQW(RESET, 0x01);
/* turn screen off */
temp = SEQR(CLKMODE);
if (display)
{
SEQW(CLKMODE, (temp & ~0x20));
/* end synchronous reset if display should be enabled */
SEQW(RESET, 0x03);
//'safe mode' test! feedback needed with this 'setting'!
if (0)//si->ps.tmds2_active)
{
/* powerup both LVDS (laptop panellink) and TMDS (DVI panellink)
* internal transmitters... */
/* note:
* the powerbits in this register are hardwired to the DVI connectors,
* instead of to the DACs! (confirmed NV34) */
//fixme...
DAC2W(FP_DEBUG0, (DAC2R(FP_DEBUG0) & 0xcfffffff));
/* ... and powerup external TMDS transmitter if it exists */
/* (confirmed OK on NV28 and NV34) */
CRTC2W(0x59, (CRTC2R(0x59) | 0x01));
}
LOG(4,("display on, "));
}
else
{
SEQW(CLKMODE, (temp | 0x20));
//'safe mode' test! feedback needed with this 'setting'!
if (0)//si->ps.tmds2_active)
{
/* powerdown both LVDS (laptop panellink) and TMDS (DVI panellink)
* internal transmitters... */
/* note:
* the powerbits in this register are hardwired to the DVI connectors,
* instead of to the DACs! (confirmed NV34) */
//fixme...
DAC2W(FP_DEBUG0, (DAC2R(FP_DEBUG0) | 0x30000000));
/* ... and powerdown external TMDS transmitter if it exists */
/* (confirmed OK on NV28 and NV34) */
CRTC2W(0x59, (CRTC2R(0x59) & 0xfe));
}
LOG(4,("display off, "));
}
if (h)
{
CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0x7f));
LOG(4,("hsync enabled, "));
}
else
{
CRTC2W(REPAINT1, (CRTC2R(REPAINT1) | 0x80));
LOG(4,("hsync disabled, "));
}
if (v)
{
CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0xbf));
LOG(4,("vsync enabled\n"));
}
else
{
CRTC2W(REPAINT1, (CRTC2R(REPAINT1) | 0x40));
LOG(4,("vsync disabled\n"));
}
return B_OK;
}
status_t eng_crtc2_dpms_fetch(bool *display, bool *h, bool *v)
{
/* enable access to secondary head */
set_crtc_owner(1);
*display = !(SEQR(CLKMODE) & 0x20);
*h = !(CRTC2R(REPAINT1) & 0x80);
*v = !(CRTC2R(REPAINT1) & 0x40);
LOG(4,("CTRC2: fetched DPMS state: "));
if (*display) LOG(4,("display on, "));
else LOG(4,("display off, "));
if (*h) LOG(4,("hsync enabled, "));
else LOG(4,("hsync disabled, "));
if (*v) LOG(4,("vsync enabled\n"));
else LOG(4,("vsync disabled\n"));
return B_OK;
}
status_t eng_crtc2_set_display_pitch()
{
uint32 offset;
LOG(4,("CRTC2: setting card pitch (offset between lines)\n"));
/* figure out offset value hardware needs */
offset = si->fbc.bytes_per_row / 8;
LOG(2,("CRTC2: offset register set to: $%04x\n", offset));
/* enable access to secondary head */
set_crtc_owner(1);
/* program the card */
CRTC2W(PITCHL, (offset & 0x00ff));
CRTC2W(REPAINT0, ((CRTC2R(REPAINT0) & 0x1f) | ((offset & 0x0700) >> 3)));
return B_OK;
}
status_t eng_crtc2_set_display_start(uint32 startadd,uint8 bpp)
{
uint32 timeout = 0;
LOG(4,("CRTC2: setting card RAM to be displayed bpp %d\n", bpp));
LOG(2,("CRTC2: startadd: $%08x\n", startadd));
LOG(2,("CRTC2: frameRAM: $%08x\n", si->framebuffer));
LOG(2,("CRTC2: framebuffer: $%08x\n", si->fbc.frame_buffer));
/* we might have no retraces during setmode! */
/* wait 25mS max. for retrace to occur (refresh > 40Hz) */
while (((ENG_REG32(RG32_RASTER2) & 0x000007ff) < si->dm.timing.v_display) &&
(timeout < (25000/10)))
{
/* don't snooze much longer or retrace might get missed! */
snooze(10);
timeout++;
}
/* enable access to secondary head */
set_crtc_owner(1);
/* upto 4Gb RAM adressing: must be used on NV10 and later! */
/* NOTE:
* While this register also exists on pre-NV10 cards, it will
* wrap-around at 16Mb boundaries!! */
/* 30bit adress in 32bit words */
ENG_REG32(RG32_NV10FB2STADD32) = (startadd & 0xfffffffc);
/* set byte adress: (b0 - 1) */
ATB2W(HORPIXPAN, ((startadd & 0x00000003) << 1));
return B_OK;
}
status_t eng_crtc2_cursor_init()
{
int i;
uint32 * fb;
/* cursor bitmap will be stored at the start of the framebuffer */
const uint32 curadd = 0;
/* enable access to secondary head */
set_crtc_owner(1);
/* set cursor bitmap adress ... */
if (si->ps.laptop)
{
/* must be used this way on pre-NV10 and on all 'Go' cards! */
/* cursorbitmap must start on 2Kbyte boundary: */
/* set adress bit11-16, and set 'no doublescan' (registerbit 1 = 0) */
CRTC2W(CURCTL0, ((curadd & 0x0001f800) >> 9));
/* set adress bit17-23, and set graphics mode cursor(?) (registerbit 7 = 1) */
CRTC2W(CURCTL1, (((curadd & 0x00fe0000) >> 17) | 0x80));
/* set adress bit24-31 */
CRTC2W(CURCTL2, ((curadd & 0xff000000) >> 24));
}
else
{
/* upto 4Gb RAM adressing:
* can be used on NV10 and later (except for 'Go' cards)! */
/* NOTE:
* This register does not exist on pre-NV10 and 'Go' cards. */
/* cursorbitmap must still start on 2Kbyte boundary: */
ENG_REG32(RG32_NV10CUR2ADD32) = (curadd & 0xfffff800);
}
/* set cursor colour: not needed because of direct nature of cursor bitmap. */
/*clear cursor*/
fb = (uint32 *) si->framebuffer + curadd;
for (i=0;i<(2048/4);i++)
{
fb[i]=0;
}
/* select 32x32 pixel, 16bit color cursorbitmap, no doublescan */
ENG_REG32(RG32_2CURCONF) = 0x02000100;
/* activate hardware cursor */
eng_crtc2_cursor_show();
return B_OK;
}
status_t eng_crtc2_cursor_show()
{
LOG(4,("CRTC2: enabling cursor\n"));
/* enable access to secondary head */
set_crtc_owner(1);
/* b0 = 1 enables cursor */
CRTC2W(CURCTL0, (CRTC2R(CURCTL0) | 0x01));
return B_OK;
}
status_t eng_crtc2_cursor_hide()
{
LOG(4,("CRTC2: disabling cursor\n"));
/* enable access to secondary head */
set_crtc_owner(1);
/* b0 = 0 disables cursor */
CRTC2W(CURCTL0, (CRTC2R(CURCTL0) & 0xfe));
return B_OK;
}
/*set up cursor shape*/
status_t eng_crtc2_cursor_define(uint8* andMask,uint8* xorMask)
{
int x, y;
uint8 b;
uint16 *cursor;
uint16 pixel;
/* get a pointer to the cursor */
cursor = (uint16*) si->framebuffer;
/* draw the cursor */
/* (Nvidia cards have a RGB15 direct color cursor bitmap, bit #16 is transparancy) */
for (y = 0; y < 16; y++)
{
b = 0x80;
for (x = 0; x < 8; x++)
{
/* preset transparant */
pixel = 0x0000;
/* set white if requested */
if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff;
/* set black if requested */
if ((!(*andMask & b)) && (*xorMask & b)) pixel = 0x8000;
/* set invert if requested */
if ( (*andMask & b) && (*xorMask & b)) pixel = 0x7fff;
/* place the pixel in the bitmap */
cursor[x + (y * 32)] = pixel;
b >>= 1;
}
xorMask++;
andMask++;
b = 0x80;
for (; x < 16; x++)
{
/* preset transparant */
pixel = 0x0000;
/* set white if requested */
if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff;
/* set black if requested */
if ((!(*andMask & b)) && (*xorMask & b)) pixel = 0x8000;
/* set invert if requested */
if ( (*andMask & b) && (*xorMask & b)) pixel = 0x7fff;
/* place the pixel in the bitmap */
cursor[x + (y * 32)] = pixel;
b >>= 1;
}
xorMask++;
andMask++;
}
return B_OK;
}
/* position the cursor */
status_t eng_crtc2_cursor_position(uint16 x, uint16 y)
{
uint16 yhigh;
/* make sure we are beyond the first line of the cursorbitmap being drawn during
* updating the position to prevent distortions: no double buffering feature */
/* Note:
* we need to return as quick as possible or some apps will exhibit lagging.. */
/* read the old cursor Y position */
yhigh = ((DAC2R(CURPOS) & 0x0fff0000) >> 16);
/* make sure we will wait until we are below both the old and new Y position:
* visible cursorbitmap drawing needs to be done at least... */
if (y > yhigh) yhigh = y;
if (yhigh < (si->dm.timing.v_display - 16))
{
/* we have vertical lines below old and new cursorposition to spare. So we
* update the cursor postion 'mid-screen', but below that area. */
while (((uint16)(ENG_REG32(RG32_RASTER2) & 0x000007ff)) < (yhigh + 16))
{
snooze(10);
}
}
else
{
/* no room to spare, just wait for retrace (is relatively slow) */
while ((ENG_REG32(RG32_RASTER2) & 0x000007ff) < si->dm.timing.v_display)
{
/* don't snooze much longer or retrace might get missed! */
snooze(10);
}
}
/* update cursorposition */
DAC2W(CURPOS, ((x & 0x0fff) | ((y & 0x0fff) << 16)));
return B_OK;
}
↑ V616 The 'curadd' named constant with the value of 0 is used in the bitwise operation.
↑ V616 The 'curadd' named constant with the value of 0 is used in the bitwise operation.
↑ V616 The 'curadd' named constant with the value of 0 is used in the bitwise operation.
↑ V616 The 'curadd' named constant with the value of 0 is used in the bitwise operation.