/*
* Copyright 2006-2010, Haiku, Inc. All Rights Reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Axel Dörfler, axeld@pinc-software.de
* Hugo Santos, hugosantos@gmail.com
*/
//! Ethernet Address Resolution Protocol, see RFC 826.
#include <arp_control.h>
#include <net_datalink_protocol.h>
#include <net_device.h>
#include <net_datalink.h>
#include <net_stack.h>
#include <NetBufferUtilities.h>
#include <generic_syscall.h>
#include <util/atomic.h>
#include <util/AutoLock.h>
#include <util/DoublyLinkedList.h>
#include <ByteOrder.h>
#include <KernelExport.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <new>
#include <stdio.h>
#include <string.h>
#include <sys/sockio.h>
//#define TRACE_ARP
#ifdef TRACE_ARP
# define TRACE(x) dprintf x
#else
# define TRACE(x) ;
#endif
struct arp_header {
uint16 hardware_type;
uint16 protocol_type;
uint8 hardware_length;
uint8 protocol_length;
uint16 opcode;
// TODO: this should be a variable length header, but for our current
// usage (Ethernet/IPv4), this should work fine.
uint8 hardware_sender[6];
in_addr_t protocol_sender;
uint8 hardware_target[6];
in_addr_t protocol_target;
} _PACKED;
#define ARP_OPCODE_REQUEST 1
#define ARP_OPCODE_REPLY 2
#define ARP_HARDWARE_TYPE_ETHER 1
struct arp_entry {
arp_entry *next;
in_addr_t protocol_address;
sockaddr_dl hardware_address;
uint32 flags;
net_buffer *request_buffer;
net_timer timer;
uint32 timer_state;
bigtime_t timestamp;
net_datalink_protocol *protocol;
typedef DoublyLinkedListCLink<net_buffer> NetBufferLink;
typedef DoublyLinkedList<net_buffer, NetBufferLink> BufferList;
BufferList queue;
static arp_entry *Lookup(in_addr_t protocolAddress);
static arp_entry *Add(in_addr_t protocolAddress,
sockaddr_dl *hardwareAddress, uint32 flags);
~arp_entry();
void ClearQueue();
void MarkFailed();
void MarkValid();
void ScheduleRemoval();
};
// see arp_control.h for more flags
#define ARP_FLAG_REMOVED 0x00010000
#define ARP_PUBLIC_FLAG_MASK 0x0000ffff
#define ARP_NO_STATE 0
#define ARP_STATE_REQUEST 1
#define ARP_STATE_LAST_REQUEST 5
#define ARP_STATE_REQUEST_FAILED 6
#define ARP_STATE_REMOVE_FAILED 7
#define ARP_STATE_STALE 8
#define ARP_STALE_TIMEOUT 30 * 60000000LL // 30 minutes
#define ARP_REJECT_TIMEOUT 20000000LL // 20 seconds
#define ARP_REQUEST_TIMEOUT 1000000LL // 1 second
struct arp_protocol : net_datalink_protocol {
sockaddr_dl hardware_address;
in_addr_t local_address;
};
static const net_buffer* kDeletedBuffer = (net_buffer*)~0;
static void arp_timer(struct net_timer *timer, void *data);
net_buffer_module_info* gBufferModule;
static net_stack_module_info* sStackModule;
static net_datalink_module_info* sDatalinkModule;
static mutex sCacheLock;
static bool sIgnoreReplies;
struct arpHash {
typedef in_addr_t KeyType;
typedef arp_entry ValueType;
size_t HashKey(KeyType key) const
{
return key;
}
size_t Hash(ValueType* value) const
{
return HashKey(value->protocol_address);
}
bool Compare(KeyType key, ValueType* value) const
{
return value->protocol_address == key;
}
ValueType*& GetLink(ValueType* value) const
{
return value->next;
}
};
typedef BOpenHashTable<arpHash> AddressCache;
static AddressCache* sCache;
#ifdef TRACE_ARP
const char*
mac_to_string(uint8* address)
{
static char buffer[20];
snprintf(buffer, sizeof(buffer), "%02x:%02x:%02x:%02x:%02x:%02x",
address[0], address[1], address[2], address[3], address[4], address[5]);
return buffer;
}
const char*
inet_to_string(in_addr_t address)
{
static char buffer[20];
unsigned int hostAddress = ntohl(address);
snprintf(buffer, sizeof(buffer), "%d.%d.%d.%d",
hostAddress >> 24, (hostAddress >> 16) & 0xff,
(hostAddress >> 8) & 0xff, hostAddress & 0xff);
return buffer;
}
#endif // TRACE_ARP
static net_buffer*
get_request_buffer(arp_entry* entry)
{
net_buffer* buffer = entry->request_buffer;
if (buffer == NULL || buffer == kDeletedBuffer)
return NULL;
buffer = atomic_pointer_test_and_set(&entry->request_buffer,
(net_buffer*)NULL, buffer);
if (buffer == kDeletedBuffer)
return NULL;
return buffer;
}
static void
put_request_buffer(arp_entry* entry, net_buffer* buffer)
{
net_buffer* requestBuffer = atomic_pointer_test_and_set(
&entry->request_buffer, buffer, (net_buffer*)NULL);
if (requestBuffer != NULL) {
// someone else took over ownership of the request buffer
gBufferModule->free(buffer);
}
}
static void
delete_request_buffer(arp_entry* entry)
{
net_buffer* buffer = atomic_pointer_get_and_set(&entry->request_buffer,
kDeletedBuffer);
if (buffer != NULL && buffer != kDeletedBuffer)
gBufferModule->free(buffer);
}
static void
ipv4_to_ether_multicast(sockaddr_dl *destination, const sockaddr_in *source)
{
// RFC 1112 - Host extensions for IP multicasting
//
// ``An IP host group address is mapped to an Ethernet multicast
// address by placing the low-order 23-bits of the IP address into
// the low-order 23 bits of the Ethernet multicast address
// 01-00-5E-00-00-00 (hex).''
destination->sdl_len = sizeof(sockaddr_dl);
destination->sdl_family = AF_LINK;
destination->sdl_index = 0;
destination->sdl_type = IFT_ETHER;
destination->sdl_e_type = htons(ETHER_TYPE_IP);
destination->sdl_nlen = destination->sdl_slen = 0;
destination->sdl_alen = ETHER_ADDRESS_LENGTH;
memcpy(LLADDR(destination) + 2, &source->sin_addr, sizeof(in_addr));
uint32 *data = (uint32 *)LLADDR(destination);
data[0] = (data[0] & htonl(0x7f)) | htonl(0x01005e00);
}
// #pragma mark -
/*static*/ arp_entry *
arp_entry::Lookup(in_addr_t address)
{
return sCache->Lookup(address);
}
/*static*/ arp_entry *
arp_entry::Add(in_addr_t protocolAddress, sockaddr_dl *hardwareAddress,
uint32 flags)
{
ASSERT_LOCKED_MUTEX(&sCacheLock);
arp_entry *entry = new (std::nothrow) arp_entry;
if (entry == NULL)
return NULL;
entry->protocol_address = protocolAddress;
entry->flags = flags;
entry->timestamp = system_time();
entry->protocol = NULL;
entry->request_buffer = NULL;
entry->timer_state = ARP_NO_STATE;
sStackModule->init_timer(&entry->timer, arp_timer, entry);
if (hardwareAddress != NULL) {
// this entry is already resolved
entry->hardware_address = *hardwareAddress;
entry->hardware_address.sdl_e_type = htons(ETHER_TYPE_IP);
} else {
// this entry still needs to be resolved
entry->hardware_address.sdl_alen = 0;
}
if (entry->hardware_address.sdl_len != sizeof(sockaddr_dl)) {
// explicitly set correct length in case our caller hasn't...
entry->hardware_address.sdl_len = sizeof(sockaddr_dl);
}
if (sCache->Insert(entry) != B_OK) {
// We can delete the entry here with the sCacheLock held, since it's
// guaranteed there are no timers pending.
delete entry;
return NULL;
}
return entry;
}
arp_entry::~arp_entry()
{
// make sure there is no active timer left for us
sStackModule->cancel_timer(&timer);
sStackModule->wait_for_timer(&timer);
ClearQueue();
}
void
arp_entry::ClearQueue()
{
BufferList::Iterator iterator = queue.GetIterator();
while (iterator.HasNext()) {
net_buffer *buffer = iterator.Next();
iterator.Remove();
gBufferModule->free(buffer);
}
}
void
arp_entry::MarkFailed()
{
TRACE(("ARP entry %p Marked as FAILED\n", this));
flags = (flags & ~ARP_FLAG_VALID) | ARP_FLAG_REJECT;
ClearQueue();
}
void
arp_entry::MarkValid()
{
TRACE(("ARP entry %p Marked as VALID, have %li packets queued.\n", this,
queue.Count()));
flags = (flags & ~ARP_FLAG_REJECT) | ARP_FLAG_VALID;
BufferList::Iterator iterator = queue.GetIterator();
while (iterator.HasNext()) {
net_buffer *buffer = iterator.Next();
iterator.Remove();
TRACE((" ARP Dequeing packet %p...\n", buffer));
memcpy(buffer->destination, &hardware_address,
hardware_address.sdl_len);
protocol->next->module->send_data(protocol->next, buffer);
}
}
void
arp_entry::ScheduleRemoval()
{
// schedule a timer to remove this entry
timer_state = ARP_STATE_REMOVE_FAILED;
sStackModule->set_timer(&timer, 0);
}
// #pragma mark -
/*! Updates the entry determined by \a protocolAddress with the specified
\a hardwareAddress.
If such an entry does not exist yet, a new entry is added. If you try
to update a local existing entry but didn't ask for it (by setting
\a flags to ARP_FLAG_LOCAL), an error is returned.
This function does not lock the cache - you have to do it yourself
before calling it.
*/
static status_t
arp_update_entry(in_addr_t protocolAddress, sockaddr_dl *hardwareAddress,
uint32 flags, arp_entry **_entry = NULL)
{
ASSERT_LOCKED_MUTEX(&sCacheLock);
TRACE(("%s(%s, %s, flags 0x%" B_PRIx32 ")\n", __FUNCTION__,
inet_to_string(protocolAddress), mac_to_string(LLADDR(hardwareAddress)),
flags));
arp_entry *entry = arp_entry::Lookup(protocolAddress);
if (entry != NULL) {
// We disallow updating of entries that had been resolved before,
// but to a different address (only for those that belong to a
// specific address - redefining INADDR_ANY is always allowed).
// Right now, you have to manually purge the ARP entries (or wait some
// time) to let us switch to the new address.
if (protocolAddress != INADDR_ANY
&& entry->hardware_address.sdl_alen != 0
&& memcmp(LLADDR(&entry->hardware_address),
LLADDR(hardwareAddress), ETHER_ADDRESS_LENGTH)) {
uint8* data = LLADDR(hardwareAddress);
dprintf("ARP host %08x updated with different hardware address "
"%02x:%02x:%02x:%02x:%02x:%02x.\n", protocolAddress,
data[0], data[1], data[2], data[3], data[4], data[5]);
return B_ERROR;
}
entry->hardware_address = *hardwareAddress;
entry->timestamp = system_time();
} else {
entry = arp_entry::Add(protocolAddress, hardwareAddress, flags);
if (entry == NULL)
return B_NO_MEMORY;
}
delete_request_buffer(entry);
if ((entry->flags & ARP_FLAG_PERMANENT) == 0) {
// (re)start the stale timer
entry->timer_state = ARP_STATE_STALE;
sStackModule->set_timer(&entry->timer, ARP_STALE_TIMEOUT);
}
if ((entry->flags & ARP_FLAG_REJECT) != 0)
entry->MarkFailed();
else
entry->MarkValid();
if (_entry)
*_entry = entry;
return B_OK;
}
static status_t
arp_set_local_entry(arp_protocol* protocol, const sockaddr* local)
{
MutexLocker locker(sCacheLock);
net_interface* interface = protocol->interface;
in_addr_t inetAddress;
if (local == NULL) {
// interface has not yet been set
inetAddress = INADDR_ANY;
} else
inetAddress = ((sockaddr_in*)local)->sin_addr.s_addr;
TRACE(("%s(): address %s\n", __FUNCTION__, inet_to_string(inetAddress)));
if (protocol->local_address == 0)
protocol->local_address = inetAddress;
sockaddr_dl address;
address.sdl_len = sizeof(sockaddr_dl);
address.sdl_family = AF_LINK;
address.sdl_type = IFT_ETHER;
address.sdl_e_type = htons(ETHER_TYPE_IP);
address.sdl_nlen = 0;
address.sdl_slen = 0;
address.sdl_alen = interface->device->address.length;
memcpy(LLADDR(&address), interface->device->address.data, address.sdl_alen);
memcpy(&protocol->hardware_address, &address, sizeof(sockaddr_dl));
// cache the address in our protocol
arp_entry* entry;
status_t status = arp_update_entry(inetAddress, &address,
ARP_FLAG_LOCAL | ARP_FLAG_PERMANENT, &entry);
if (status == B_OK)
entry->protocol = protocol;
return status;
}
static void
arp_remove_local_entry(arp_protocol* protocol, const sockaddr* local,
net_interface_address* updateLocalAddress = NULL)
{
in_addr_t inetAddress;
if (local == NULL) {
// interface has not yet been set
inetAddress = INADDR_ANY;
} else
inetAddress = ((sockaddr_in*)local)->sin_addr.s_addr;
TRACE(("%s(): address %s\n", __FUNCTION__, inet_to_string(inetAddress)));
MutexLocker locker(sCacheLock);
arp_entry* entry = arp_entry::Lookup(inetAddress);
if (entry != NULL) {
sCache->Remove(entry);
entry->flags |= ARP_FLAG_REMOVED;
}
if (updateLocalAddress != NULL && protocol->local_address == inetAddress) {
// find new local sender address
protocol->local_address = 0;
net_interface_address* address = NULL;
while (sDatalinkModule->get_next_interface_address(protocol->interface,
&address)) {
if (address == updateLocalAddress || address->local == NULL
|| address->local->sa_family != AF_INET)
continue;
protocol->local_address
= ((sockaddr_in*)address->local)->sin_addr.s_addr;
}
}
locker.Unlock();
delete entry;
if (protocol->local_address == 0 && updateLocalAddress) {
// Try to keep the interface operational
arp_set_local_entry(protocol, NULL);
}
}
/*! Removes all entries belonging to the local interface of the \a procotol
given.
*/
static void
arp_remove_local(arp_protocol* protocol)
{
net_interface_address* address = NULL;
while (sDatalinkModule->get_next_interface_address(protocol->interface,
&address)) {
if (address->local == NULL || address->local->sa_family != AF_INET)
continue;
arp_remove_local_entry(protocol, address->local);
}
}
/*! Creates permanent local entries for all addresses of the interface belonging
to this protocol.
Returns an error if no entry could be added.
*/
static status_t
arp_update_local(arp_protocol* protocol)
{
protocol->local_address = 0;
// TODO: test if this actually works - maybe we should use
// INADDR_BROADCAST instead
ssize_t count = 0;
net_interface_address* address = NULL;
while (sDatalinkModule->get_next_interface_address(protocol->interface,
&address)) {
if (address->local == NULL || address->local->sa_family != AF_INET)
continue;
if (arp_set_local_entry(protocol, address->local) == B_OK) {
count++;
}
}
if (count == 0)
return arp_set_local_entry(protocol, NULL);
return B_OK;
}
static status_t
handle_arp_request(net_buffer *buffer, arp_header &header)
{
MutexLocker locker(sCacheLock);
if (!sIgnoreReplies) {
arp_update_entry(header.protocol_sender,
(sockaddr_dl *)buffer->source, 0);
// remember the address of the sender as we might need it later
}
// check if this request is for us
arp_entry *entry = arp_entry::Lookup(header.protocol_target);
if (entry == NULL || entry->protocol == NULL
|| (entry->flags & (ARP_FLAG_LOCAL | ARP_FLAG_PUBLISH)) == 0) {
// We're not the one to answer this request
// TODO: instead of letting the other's request time-out, can we reply
// failure somehow?
TRACE((" not for us\n"));
return B_ERROR;
}
// send a reply (by reusing the buffer we got)
TRACE((" send reply!\n"));
header.opcode = htons(ARP_OPCODE_REPLY);
memcpy(header.hardware_target, header.hardware_sender, ETHER_ADDRESS_LENGTH);
header.protocol_target = header.protocol_sender;
memcpy(header.hardware_sender, LLADDR(&entry->hardware_address),
ETHER_ADDRESS_LENGTH);
header.protocol_sender = entry->protocol_address;
// exchange source and destination address
memcpy(LLADDR((sockaddr_dl *)buffer->source), header.hardware_sender,
ETHER_ADDRESS_LENGTH);
memcpy(LLADDR((sockaddr_dl *)buffer->destination), header.hardware_target,
ETHER_ADDRESS_LENGTH);
buffer->flags = 0;
// make sure this won't be a broadcast message
gBufferModule->trim(buffer, sizeof(arp_header));
return entry->protocol->next->module->send_data(entry->protocol->next,
buffer);
}
static void
handle_arp_reply(net_buffer *buffer, arp_header &header)
{
if (sIgnoreReplies)
return;
MutexLocker locker(sCacheLock);
arp_update_entry(header.protocol_sender, (sockaddr_dl *)buffer->source, 0);
}
static status_t
arp_receive(void *cookie, net_device *device, net_buffer *buffer)
{
TRACE(("ARP receive\n"));
NetBufferHeaderReader<arp_header> bufferHeader(buffer);
if (bufferHeader.Status() < B_OK)
return bufferHeader.Status();
arp_header &header = bufferHeader.Data();
uint16 opcode = ntohs(header.opcode);
#ifdef TRACE_ARP
dprintf(" hw sender: %s\n", mac_to_string(header.hardware_sender));
dprintf(" proto sender: %s\n", inet_to_string(header.protocol_sender));
dprintf(" hw target: %s\n", mac_to_string(header.hardware_target));;
dprintf(" proto target: %s\n", inet_to_string(header.protocol_target));
#endif // TRACE_ARP
if (ntohs(header.protocol_type) != ETHER_TYPE_IP
|| ntohs(header.hardware_type) != ARP_HARDWARE_TYPE_ETHER)
return B_BAD_TYPE;
// check if the packet is okay
if (header.hardware_length != ETHER_ADDRESS_LENGTH
|| header.protocol_length != sizeof(in_addr_t))
return B_BAD_DATA;
// handle packet
switch (opcode) {
case ARP_OPCODE_REQUEST:
TRACE((" got ARP request\n"));
if (handle_arp_request(buffer, header) == B_OK) {
// the function will take care of the buffer if everything
// went well
return B_OK;
}
break;
case ARP_OPCODE_REPLY:
TRACE((" got ARP reply\n"));
handle_arp_reply(buffer, header);
break;
default:
dprintf("unknown ARP opcode %d\n", opcode);
return B_ERROR;
}
gBufferModule->free(buffer);
return B_OK;
}
static void
arp_timer(struct net_timer *timer, void *data)
{
arp_entry *entry = (arp_entry *)data;
TRACE(("ARP timer %ld, entry %p!\n", entry->timer_state, entry));
switch (entry->timer_state) {
case ARP_NO_STATE:
// who are you kidding?
break;
case ARP_STATE_REQUEST_FAILED:
// Requesting the ARP entry failed, we keep it around for a while,
// though, so that we won't try to request the same address again
// too soon.
TRACE((" requesting ARP entry %p failed!\n", entry));
entry->timer_state = ARP_STATE_REMOVE_FAILED;
entry->MarkFailed();
sStackModule->set_timer(&entry->timer, ARP_REJECT_TIMEOUT);
break;
case ARP_STATE_REMOVE_FAILED:
case ARP_STATE_STALE:
{
// the entry has aged so much that we're going to remove it
TRACE((" remove ARP entry %p!\n", entry));
MutexLocker locker(sCacheLock);
if ((entry->flags & ARP_FLAG_REMOVED) != 0) {
// The entry has already been removed, and is about to be
// deleted
break;
}
sCache->Remove(entry);
locker.Unlock();
delete entry;
break;
}
default:
{
if (entry->timer_state > ARP_STATE_LAST_REQUEST
|| entry->protocol == NULL)
break;
TRACE((" send request for ARP entry %p!\n", entry));
net_buffer *request = get_request_buffer(entry);
if (request == NULL)
break;
if (entry->timer_state < ARP_STATE_LAST_REQUEST) {
// we'll still need our buffer, so in order to prevent it being
// freed by a successful send, we need to clone it
net_buffer* clone = gBufferModule->clone(request, true);
if (clone == NULL) {
// cloning failed - that means we won't be able to send as
// many requests as originally planned
entry->timer_state = ARP_STATE_LAST_REQUEST;
} else {
put_request_buffer(entry, request);
request = clone;
}
}
// we're trying to resolve the address, so keep sending requests
status_t status = entry->protocol->next->module->send_data(
entry->protocol->next, request);
if (status < B_OK)
gBufferModule->free(request);
entry->timer_state++;
sStackModule->set_timer(&entry->timer, ARP_REQUEST_TIMEOUT);
break;
}
}
}
/*! Address resolver function: prepares and triggers the ARP request necessary
to retrieve the hardware address for \a address.
You need to have the sCacheLock held when calling this function.
*/
static status_t
arp_start_resolve(arp_protocol* protocol, in_addr_t address, arp_entry** _entry)
{
ASSERT_LOCKED_MUTEX(&sCacheLock);
// create an unresolved ARP entry as a placeholder
arp_entry *entry = arp_entry::Add(address, NULL, 0);
if (entry == NULL)
return B_NO_MEMORY;
// prepare ARP request
entry->request_buffer = gBufferModule->create(256);
if (entry->request_buffer == NULL) {
entry->ScheduleRemoval();
return B_NO_MEMORY;
}
NetBufferPrepend<arp_header> bufferHeader(entry->request_buffer);
status_t status = bufferHeader.Status();
if (status < B_OK) {
entry->ScheduleRemoval();
return status;
}
// prepare ARP header
net_device *device = protocol->interface->device;
arp_header &header = bufferHeader.Data();
header.hardware_type = htons(ARP_HARDWARE_TYPE_ETHER);
header.protocol_type = htons(ETHER_TYPE_IP);
header.hardware_length = ETHER_ADDRESS_LENGTH;
header.protocol_length = sizeof(in_addr_t);
header.opcode = htons(ARP_OPCODE_REQUEST);
memcpy(header.hardware_sender, device->address.data, ETHER_ADDRESS_LENGTH);
memset(header.hardware_target, 0, ETHER_ADDRESS_LENGTH);
header.protocol_sender = protocol->local_address;
header.protocol_target = address;
// prepare source and target addresses
struct sockaddr_dl &source = *(struct sockaddr_dl *)
entry->request_buffer->source;
source.sdl_len = sizeof(sockaddr_dl);
source.sdl_family = AF_LINK;
source.sdl_index = device->index;
source.sdl_type = IFT_ETHER;
source.sdl_e_type = htons(ETHER_TYPE_ARP);
source.sdl_nlen = source.sdl_slen = 0;
source.sdl_alen = ETHER_ADDRESS_LENGTH;
memcpy(source.sdl_data, device->address.data, ETHER_ADDRESS_LENGTH);
entry->request_buffer->flags = MSG_BCAST;
// this is a broadcast packet, we don't need to fill in the destination
entry->protocol = protocol;
entry->timer_state = ARP_STATE_REQUEST;
sStackModule->set_timer(&entry->timer, 0);
// start request timer
*_entry = entry;
return B_OK;
}
static status_t
arp_control(const char *subsystem, uint32 function, void *buffer,
size_t bufferSize)
{
struct arp_control control;
if (bufferSize != sizeof(struct arp_control))
return B_BAD_VALUE;
if (user_memcpy(&control, buffer, sizeof(struct arp_control)) < B_OK)
return B_BAD_ADDRESS;
MutexLocker locker(sCacheLock);
switch (function) {
case ARP_SET_ENTRY:
{
sockaddr_dl hardwareAddress;
hardwareAddress.sdl_len = sizeof(sockaddr_dl);
hardwareAddress.sdl_family = AF_LINK;
hardwareAddress.sdl_index = 0;
hardwareAddress.sdl_type = IFT_ETHER;
hardwareAddress.sdl_e_type = htons(ETHER_TYPE_IP);
hardwareAddress.sdl_nlen = hardwareAddress.sdl_slen = 0;
hardwareAddress.sdl_alen = ETHER_ADDRESS_LENGTH;
memcpy(hardwareAddress.sdl_data, control.ethernet_address,
ETHER_ADDRESS_LENGTH);
return arp_update_entry(control.address, &hardwareAddress,
control.flags & (ARP_FLAG_PUBLISH | ARP_FLAG_PERMANENT
| ARP_FLAG_REJECT));
}
case ARP_GET_ENTRY:
{
arp_entry *entry = arp_entry::Lookup(control.address);
if (entry == NULL || !(entry->flags & ARP_FLAG_VALID))
return B_ENTRY_NOT_FOUND;
if (entry->hardware_address.sdl_alen == ETHER_ADDRESS_LENGTH) {
memcpy(control.ethernet_address,
entry->hardware_address.sdl_data, ETHER_ADDRESS_LENGTH);
} else
memset(control.ethernet_address, 0, ETHER_ADDRESS_LENGTH);
control.flags = entry->flags & ARP_PUBLIC_FLAG_MASK;
return user_memcpy(buffer, &control, sizeof(struct arp_control));
}
case ARP_GET_ENTRIES:
{
AddressCache::Iterator iterator(sCache);
arp_entry *entry = NULL;
for (uint32 i = 0; i <= control.cookie; i++) {
if (!iterator.HasNext())
return B_ENTRY_NOT_FOUND;
entry = iterator.Next();
}
control.cookie++;
control.address = entry->protocol_address;
if (entry->hardware_address.sdl_alen == ETHER_ADDRESS_LENGTH) {
memcpy(control.ethernet_address,
entry->hardware_address.sdl_data, ETHER_ADDRESS_LENGTH);
} else
memset(control.ethernet_address, 0, ETHER_ADDRESS_LENGTH);
control.flags = entry->flags & ARP_PUBLIC_FLAG_MASK;
return user_memcpy(buffer, &control, sizeof(struct arp_control));
}
case ARP_DELETE_ENTRY:
{
arp_entry *entry = arp_entry::Lookup(control.address);
if (entry == NULL)
return B_ENTRY_NOT_FOUND;
if ((entry->flags & ARP_FLAG_LOCAL) != 0)
return B_BAD_VALUE;
entry->ScheduleRemoval();
return B_OK;
}
case ARP_FLUSH_ENTRIES:
{
AddressCache::Iterator iterator(sCache);
arp_entry *entry;
while (iterator.HasNext()) {
entry = iterator.Next();
// we never flush local ARP entries
if ((entry->flags & ARP_FLAG_LOCAL) != 0)
continue;
entry->ScheduleRemoval();
}
return B_OK;
}
case ARP_IGNORE_REPLIES:
sIgnoreReplies = control.flags != 0;
return B_OK;
}
return B_BAD_VALUE;
}
static status_t
arp_init()
{
mutex_init(&sCacheLock, "arp cache");
sCache = new(std::nothrow) AddressCache();
if (sCache == NULL || sCache->Init(64) != B_OK) {
mutex_destroy(&sCacheLock);
return B_NO_MEMORY;
}
register_generic_syscall(ARP_SYSCALLS, arp_control, 1, 0);
return B_OK;
}
static status_t
arp_uninit()
{
unregister_generic_syscall(ARP_SYSCALLS, 1);
return B_OK;
}
// #pragma mark - net_datalink_protocol
status_t
arp_init_protocol(net_interface* interface, net_domain* domain,
net_datalink_protocol** _protocol)
{
// We currently only support a single family and type!
if (interface->device->type != IFT_ETHER
|| domain->family != AF_INET)
return B_BAD_TYPE;
status_t status = sStackModule->register_device_handler(interface->device,
B_NET_FRAME_TYPE(IFT_ETHER, ETHER_TYPE_ARP), &arp_receive, NULL);
if (status != B_OK)
return status;
status = sStackModule->register_domain_device_handler(
interface->device, B_NET_FRAME_TYPE(IFT_ETHER, ETHER_TYPE_IP), domain);
if (status != B_OK)
return status;
arp_protocol* protocol = new(std::nothrow) arp_protocol;
if (protocol == NULL)
return B_NO_MEMORY;
memset(&protocol->hardware_address, 0, sizeof(sockaddr_dl));
protocol->local_address = 0;
*_protocol = protocol;
return B_OK;
}
status_t
arp_uninit_protocol(net_datalink_protocol *protocol)
{
sStackModule->unregister_device_handler(protocol->interface->device,
B_NET_FRAME_TYPE(IFT_ETHER, ETHER_TYPE_ARP));
sStackModule->unregister_device_handler(protocol->interface->device,
B_NET_FRAME_TYPE(IFT_ETHER, ETHER_TYPE_IP));
delete protocol;
return B_OK;
}
status_t
arp_send_data(net_datalink_protocol *_protocol, net_buffer *buffer)
{
arp_protocol *protocol = (arp_protocol *)_protocol;
{
MutexLocker locker(sCacheLock);
// Set buffer target and destination address
memcpy(buffer->source, &protocol->hardware_address,
protocol->hardware_address.sdl_len);
if ((buffer->flags & MSG_MCAST) != 0) {
sockaddr_dl multicastDestination;
ipv4_to_ether_multicast(&multicastDestination,
(sockaddr_in *)buffer->destination);
memcpy(buffer->destination, &multicastDestination,
sizeof(multicastDestination));
} else if ((buffer->flags & MSG_BCAST) == 0) {
// Lookup destination (we may need to wait for this)
arp_entry *entry = arp_entry::Lookup(
((struct sockaddr_in *)buffer->destination)->sin_addr.s_addr);
if (entry == NULL) {
status_t status = arp_start_resolve(protocol,
((struct sockaddr_in*)buffer->destination)->sin_addr.s_addr,
&entry);
if (status != B_OK)
return status;
}
if ((entry->flags & ARP_FLAG_REJECT) != 0)
return EHOSTUNREACH;
if ((entry->flags & ARP_FLAG_VALID) == 0) {
// entry is still being resolved.
TRACE(("ARP Queuing packet %p, entry still being resolved.\n",
buffer));
entry->queue.Add(buffer);
return B_OK;
}
memcpy(buffer->destination, &entry->hardware_address,
entry->hardware_address.sdl_len);
}
// the broadcast address is set in the ethernet frame module
}
TRACE(("%s(%p): from %s\n", __FUNCTION__, buffer,
mac_to_string(LLADDR((sockaddr_dl*)buffer->source))));
TRACE((" to %s\n",
mac_to_string(LLADDR((sockaddr_dl*)buffer->destination))));
return protocol->next->module->send_data(protocol->next, buffer);
}
status_t
arp_up(net_datalink_protocol* _protocol)
{
arp_protocol* protocol = (arp_protocol*)_protocol;
status_t status = protocol->next->module->interface_up(protocol->next);
if (status != B_OK)
return status;
// cache this device's address for later use
status = arp_update_local(protocol);
if (status != B_OK) {
protocol->next->module->interface_down(protocol->next);
return status;
}
return B_OK;
}
void
arp_down(net_datalink_protocol *protocol)
{
// remove local ARP entries from the cache
arp_remove_local((arp_protocol*)protocol);
protocol->next->module->interface_down(protocol->next);
}
status_t
arp_change_address(net_datalink_protocol* _protocol,
net_interface_address* address, int32 option,
const struct sockaddr* oldAddress, const struct sockaddr* newAddress)
{
arp_protocol* protocol = (arp_protocol*)_protocol;
TRACE(("%s(option %" B_PRId32 ")\n", __FUNCTION__, option));
switch (option) {
case SIOCSIFADDR:
case SIOCAIFADDR:
case SIOCDIFADDR:
// Those are the options we handle
if ((protocol->interface->flags & IFF_UP) != 0) {
// Update ARP entry for the local address
if (newAddress != NULL && newAddress->sa_family == AF_INET) {
status_t status = arp_set_local_entry(protocol, newAddress);
if (status != B_OK)
return status;
}
if (option != SIOCAIFADDR
&& (oldAddress == NULL || oldAddress->sa_family == AF_INET))
arp_remove_local_entry(protocol, oldAddress, address);
}
break;
default:
break;
}
return protocol->next->module->change_address(protocol->next, address,
option, oldAddress, newAddress);
}
status_t
arp_control(net_datalink_protocol *_protocol, int32 op, void *argument,
size_t length)
{
arp_protocol* protocol = (arp_protocol*)_protocol;
return protocol->next->module->control(protocol->next, op, argument,
length);
}
static status_t
arp_join_multicast(net_datalink_protocol *protocol, const sockaddr *address)
{
if (address->sa_family != AF_INET)
return EINVAL;
sockaddr_dl multicastAddress;
ipv4_to_ether_multicast(&multicastAddress, (const sockaddr_in *)address);
return protocol->next->module->join_multicast(protocol->next,
(sockaddr *)&multicastAddress);
}
static status_t
arp_leave_multicast(net_datalink_protocol *protocol, const sockaddr *address)
{
if (address->sa_family != AF_INET)
return EINVAL;
sockaddr_dl multicastAddress;
ipv4_to_ether_multicast(&multicastAddress, (const sockaddr_in *)address);
return protocol->next->module->leave_multicast(protocol->next,
(sockaddr *)&multicastAddress);
}
static status_t
arp_std_ops(int32 op, ...)
{
switch (op) {
case B_MODULE_INIT:
return arp_init();
case B_MODULE_UNINIT:
return arp_uninit();
default:
return B_ERROR;
}
}
static net_datalink_protocol_module_info sARPModule = {
{
"network/datalink_protocols/arp/v1",
0,
arp_std_ops
},
arp_init_protocol,
arp_uninit_protocol,
arp_send_data,
arp_up,
arp_down,
arp_change_address,
arp_control,
arp_join_multicast,
arp_leave_multicast,
};
module_dependency module_dependencies[] = {
{NET_STACK_MODULE_NAME, (module_info**)&sStackModule},
{NET_DATALINK_MODULE_NAME, (module_info**)&sDatalinkModule},
{NET_BUFFER_MODULE_NAME, (module_info**)&gBufferModule},
{}
};
module_info* modules[] = {
(module_info*)&sARPModule,
NULL
};
↑ V512 A call of the 'memcpy' function will lead to overflow of the buffer 'buffer->destination'.