/*-
* SPDX-License-Identifier: ISC
*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar5212/ar5212_reset.c 326695 2017-12-08 15:57:29Z pfg $
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212phy.h"
#include "ah_eeprom_v3.h"
/* Additional Time delay to wait after activiting the Base band */
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
#define PLL_SETTLE_DELAY 300 /* 300 usec */
static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
/* NB: public for 5312 use */
HAL_BOOL ar5212IsSpurChannel(struct ath_hal *,
const struct ieee80211_channel *);
HAL_BOOL ar5212ChannelChange(struct ath_hal *,
const struct ieee80211_channel *);
int16_t ar5212GetNf(struct ath_hal *, struct ieee80211_channel *);
HAL_BOOL ar5212SetBoardValues(struct ath_hal *,
const struct ieee80211_channel *);
void ar5212SetDeltaSlope(struct ath_hal *,
const struct ieee80211_channel *);
HAL_BOOL ar5212SetTransmitPower(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain);
static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
const struct ieee80211_channel *, int16_t tpcScaleReduction,
int16_t powerLimit,
HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
static void ar5212GetTargetPowers(struct ath_hal *,
const struct ieee80211_channel *,
const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
TRGT_POWER_INFO *pNewPower);
static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
const RD_EDGES_POWER *pRdEdgesPower);
void ar5212SetRateDurationTable(struct ath_hal *,
const struct ieee80211_channel *);
void ar5212SetIFSTiming(struct ath_hal *,
const struct ieee80211_channel *);
/* NB: public for RF backend use */
void ar5212GetLowerUpperValues(uint16_t value,
uint16_t *pList, uint16_t listSize,
uint16_t *pLowerValue, uint16_t *pUpperValue);
void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
uint32_t numBits, uint32_t firstBit, uint32_t column);
static int
write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
HAL_BOOL bChannelChange, int writes)
{
#define IS_NO_RESET_TIMER_ADDR(x) \
( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
(((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
#define V(r, c) (ia)->data[((r)*(ia)->cols) + (c)]
int r;
/* Write Common Array Parameters */
for (r = 0; r < ia->rows; r++) {
uint32_t reg = V(r, 0);
/* XXX timer/beacon setup registers? */
/* On channel change, don't reset the PCU registers */
if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
OS_REG_WRITE(ah, reg, V(r, 1));
DMA_YIELD(writes);
}
}
return writes;
#undef IS_NO_RESET_TIMER_ADDR
#undef V
}
#define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
/*
* XXX NDIS 5.x code had MAX_RESET_WAIT set to 2000 for AP code
* and 10 for Client code
*/
#define MAX_RESET_WAIT 10
#define TX_QUEUEPEND_CHECK 1
#define TX_ENABLE_CHECK 2
#define RX_ENABLE_CHECK 4
/*
* Places the device in and out of reset and then places sane
* values in the registers based on EEPROM config, initialization
* vectors (as determined by the mode), and station configuration
*
* bChannelChange is used to preserve DMA/PCU registers across
* a HW Reset during channel change.
*/
HAL_BOOL
ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
struct ieee80211_channel *chan,
HAL_BOOL bChannelChange,
HAL_RESET_TYPE resetType,
HAL_STATUS *status)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
const HAL_EEPROM *ee;
uint32_t softLedCfg, softLedState;
uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
uint32_t macStaId1, synthDelay, txFrm2TxDStart;
uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
int16_t cckOfdmPwrDelta = 0;
u_int modesIndex, freqIndex;
HAL_STATUS ecode;
int i, regWrites;
uint32_t testReg, powerVal;
int8_t twiceAntennaGain, twiceAntennaReduction;
uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
HAL_BOOL isBmode = AH_FALSE;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
ee = AH_PRIVATE(ah)->ah_eeprom;
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
/* Bring out of sleep mode */
if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
__func__);
FAIL(HAL_EIO);
}
/*
* Map public channel to private.
*/
ichan = ath_hal_checkchannel(ah, chan);
if (ichan == AH_NULL)
FAIL(HAL_EINVAL);
switch (opmode) {
case HAL_M_STA:
case HAL_M_IBSS:
case HAL_M_HOSTAP:
case HAL_M_MONITOR:
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
__func__, opmode);
FAIL(HAL_EINVAL);
break;
}
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
SAVE_CCK(ah, chan, isBmode);
/* Preserve certain DMA hardware registers on a channel change */
if (bChannelChange) {
/*
* On Venice, the TSF is almost preserved across a reset;
* it requires doubling writes to the RESET_TSF
* bit in the AR_BEACON register; it also has the quirk
* of the TSF going back in time on the station (station
* latches onto the last beacon's tsf during a reset 50%
* of the times); the latter is not a problem for adhoc
* stations since as long as the TSF is behind, it will
* get resynchronized on receiving the next beacon; the
* TSF going backwards in time could be a problem for the
* sleep operation (supported on infrastructure stations
* only) - the best and most general fix for this situation
* is to resynchronize the various sleep/beacon timers on
* the receipt of the next beacon i.e. when the TSF itself
* gets resynchronized to the AP's TSF - power save is
* needed to be temporarily disabled until that time
*
* Need to save the sequence number to restore it after
* the reset!
*/
saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
} else
saveFrameSeqCount = 0; /* NB: silence compiler */
/* Blank the channel survey statistics */
ath_hal_survey_clear(ah);
#if 0
/*
* XXX disable for now; this appears to sometimes cause OFDM
* XXX timing error floods when ani is enabled and bg scanning
* XXX kicks in
*/
/* If the channel change is across the same mode - perform a fast channel change */
if (IS_2413(ah) || IS_5413(ah)) {
/*
* Fast channel change can only be used when:
* -channel change requested - so it's not the initial reset.
* -it's not a change to the current channel -
* often called when switching modes on a channel
* -the modes of the previous and requested channel are the
* same
* XXX opmode shouldn't change either?
*/
if (bChannelChange &&
(AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
(chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
(AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
if (ar5212ChannelChange(ah, chan)) {
/* If ChannelChange completed - skip the rest of reset */
/* XXX ani? */
goto done;
}
}
}
#endif
/*
* Preserve the antenna on a channel change
*/
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
if (saveDefAntenna == 0) /* XXX magic constants */
saveDefAntenna = 1;
/* Save hardware flag before chip reset clears the register */
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
/* Save led state from pci config register */
saveLedState = OS_REG_READ(ah, AR_PCICFG) &
(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
AR_PCICFG_LEDSLOW);
softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
softLedState = OS_REG_READ(ah, AR_GPIODO);
ar5212RestoreClock(ah, opmode); /* move to refclk operation */
/*
* Adjust gain parameters before reset if
* there's an outstanding gain updated.
*/
(void) ar5212GetRfgain(ah);
if (!ar5212ChipReset(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
FAIL(HAL_EIO);
}
/* Setup the indices for the next set of register array writes */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
freqIndex = 2;
if (IEEE80211_IS_CHAN_108G(chan))
modesIndex = 5;
else if (IEEE80211_IS_CHAN_G(chan))
modesIndex = 4;
else if (IEEE80211_IS_CHAN_B(chan))
modesIndex = 3;
else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
FAIL(HAL_EINVAL);
}
} else {
freqIndex = 1;
if (IEEE80211_IS_CHAN_TURBO(chan))
modesIndex = 2;
else if (IEEE80211_IS_CHAN_A(chan))
modesIndex = 1;
else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
FAIL(HAL_EINVAL);
}
}
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
/* Set correct Baseband to analog shift setting to access analog chips. */
OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
regWrites);
#ifdef AH_RXCFG_SDMAMW_4BYTES
/*
* Nala doesn't work with 128 byte bursts on pb42(hydra) (ar71xx),
* use 4 instead. Enabling it on all platforms would hurt performance,
* so we only enable it on the ones that are affected by it.
*/
OS_REG_WRITE(ah, AR_RXCFG, 0);
#endif
ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
ar5212SetIFSTiming(ah, chan);
if (IS_5413(ah)) {
/*
* Force window_length for 1/2 and 1/4 rate channels,
* the ini file sets this to zero otherwise.
*/
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
AR_PHY_FRAME_CTL_WINLEN, 3);
}
}
/* Overwrite INI values for revised chipsets */
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
/* ADC_CTL */
OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
AR_PHY_ADC_CTL_OFF_PWDDAC |
AR_PHY_ADC_CTL_OFF_PWDADC);
/* TX_PWR_ADJ */
if (ichan->channel == 2484) {
cckOfdmPwrDelta = SCALE_OC_DELTA(
ee->ee_cckOfdmPwrDelta -
ee->ee_scaledCh14FilterCckDelta);
} else {
cckOfdmPwrDelta = SCALE_OC_DELTA(
ee->ee_cckOfdmPwrDelta);
}
if (IEEE80211_IS_CHAN_G(chan)) {
OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
SM((ee->ee_cckOfdmPwrDelta*-1),
AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
SM((cckOfdmPwrDelta*-1),
AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
} else {
OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
}
/* Add barker RSSI thresh enable as disabled */
OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
/* Set the mute mask to the correct default */
OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
}
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
/* Clear reg to alllow RX_CLEAR line debug */
OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
}
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
#ifdef notyet
/* Enable burst prefetch for the data queues */
OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
/* Enable double-buffering */
OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
#endif
}
/* Set ADC/DAC select values */
OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
if (IS_5413(ah) || IS_2417(ah)) {
uint32_t newReg = 1;
if (IS_DISABLE_FAST_ADC_CHAN(ichan->channel))
newReg = 0;
/* As it's a clock changing register, only write when the value needs to be changed */
if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
}
/* Setup the transmit power values. */
if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error init'ing transmit power\n", __func__);
FAIL(HAL_EIO);
}
/* Write the analog registers */
if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
__func__);
FAIL(HAL_EIO);
}
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
if (IEEE80211_IS_CHAN_OFDM(chan)) {
if (IS_5413(ah) ||
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
ar5212SetSpurMitigation(ah, chan);
ar5212SetDeltaSlope(ah, chan);
}
/* Setup board specific options for EEPROM version 3 */
if (!ar5212SetBoardValues(ah, chan)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error setting board options\n", __func__);
FAIL(HAL_EIO);
}
/* Restore certain DMA hardware registers on a channel change */
if (bChannelChange)
OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
| macStaId1
| AR_STA_ID1_RTS_USE_DEF
| ahp->ah_staId1Defaults
);
ar5212SetOperatingMode(ah, opmode);
/* Set Venice BSSID mask according to current state */
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
/* Restore previous led state */
OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
/* Restore soft Led state to GPIO */
OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
OS_REG_WRITE(ah, AR_GPIODO, softLedState);
/* Restore previous antenna */
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
/* then our BSSID and associate id */
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
(ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
/* Restore bmiss rssi & count thresholds */
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
if (!ar5212SetChannel(ah, chan))
FAIL(HAL_EIO);
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
ar5212SetRateDurationTable(ah, chan);
/* Set Tx frame start to tx data start delay */
if (IS_RAD5112_ANY(ah) &&
(IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
txFrm2TxDStart =
IEEE80211_IS_CHAN_HALF(chan) ?
TX_FRAME_D_START_HALF_RATE:
TX_FRAME_D_START_QUARTER_RATE;
OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
}
/*
* Setup fast diversity.
* Fast diversity can be enabled or disabled via regadd.txt.
* Default is enabled.
* For reference,
* Disable: reg val
* 0x00009860 0x00009d18 (if 11a / 11g, else no change)
* 0x00009970 0x192bb514
* 0x0000a208 0xd03e4648
*
* Enable: 0x00009860 0x00009d10 (if 11a / 11g, else no change)
* 0x00009970 0x192fb514
* 0x0000a208 0xd03e6788
*/
/* XXX Setup pre PHY ENABLE EAR additions */
/*
* Wait for the frequency synth to settle (synth goes on
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IEEE80211_IS_CHAN_B(chan)) {
synthDelay = (4 * synthDelay) / 22;
} else {
synthDelay /= 10;
}
/* Activate the PHY (includes baseband activate and synthesizer on) */
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* There is an issue if the AP starts the calibration before
* the base band timeout completes. This could result in the
* rx_clear false triggering. As a workaround we add delay an
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
* does not happen.
*/
if (IEEE80211_IS_CHAN_HALF(chan)) {
OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
} else {
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
}
/*
* The udelay method is not reliable with notebooks.
* Need to check to see if the baseband is ready
*/
testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
/* Selects the Tx hold */
OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
i = 0;
while ((i++ < 20) &&
(OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */ OS_DELAY(200);
OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
/* Calibrate the AGC and start a NF calculation */
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
| AR_PHY_AGC_CONTROL_CAL
| AR_PHY_AGC_CONTROL_NF);
if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
INIT_IQCAL_LOG_COUNT_MAX);
OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_DO_IQCAL);
ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
} else
ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
/* Setup compression registers */
ar5212SetCompRegs(ah);
/* Set 1:1 QCU to DCU mapping for all queues */
for (i = 0; i < AR_NUM_DCU; i++)
OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
ahp->ah_intrTxqs = 0;
for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
ar5212ResetTxQueue(ah, i);
/*
* Setup interrupt handling. Note that ar5212ResetTxQueue
* manipulates the secondary IMR's as queues are enabled
* and disabled. This is done with RMW ops to insure the
* settings we make here are preserved.
*/
ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
| AR_IMR_HIUERR
;
if (opmode == HAL_M_HOSTAP)
ahp->ah_maskReg |= AR_IMR_MIB;
OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
/* Enable bus errors that are OR'd to set the HIUERR bit */
OS_REG_WRITE(ah, AR_IMR_S2,
OS_REG_READ(ah, AR_IMR_S2)
| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
if (AH_PRIVATE(ah)->ah_rfkillEnabled)
ar5212EnableRfKill(ah);
if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: offset calibration failed to complete in 1ms;"
" noisy environment?\n", __func__);
}
/*
* Set clocks back to 32kHz if they had been using refClk, then
* use an external 32kHz crystal when sleeping, if one exists.
*/
ar5212SetupClock(ah, opmode);
/*
* Writing to AR_BEACON will start timers. Hence it should
* be the last register to be written. Do not reset tsf, do
* not enable beacons at this point, but preserve other values
* like beaconInterval.
*/
OS_REG_WRITE(ah, AR_BEACON,
(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
/* XXX Setup post reset EAR additions */
/* QoS support */
if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
(AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
}
/* Turn on NOACK Support for QoS packets */
OS_REG_WRITE(ah, AR_NOACK,
SM(2, AR_NOACK_2BIT_VALUE) |
SM(5, AR_NOACK_BIT_OFFSET) |
SM(0, AR_NOACK_BYTE_OFFSET));
/* Get Antenna Gain reduction */
if (IEEE80211_IS_CHAN_5GHZ(chan)) {
ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
} else {
ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
}
twiceAntennaReduction =
ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
/* TPC for self-generated frames */
ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
ackTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
if (ackTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
ackTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
+ ahp->ah_txPowerIndexOffset;
ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
ctsTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
if (ctsTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
ctsTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
+ ahp->ah_txPowerIndexOffset;
chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
chirpTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
if (chirpTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
chirpTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
+ ahp->ah_txPowerIndexOffset;
if (ackTpcPow > 63)
ackTpcPow = 63;
if (ctsTpcPow > 63)
ctsTpcPow = 63;
if (chirpTpcPow > 63)
chirpTpcPow = 63;
powerVal = SM(ackTpcPow, AR_TPC_ACK) |
SM(ctsTpcPow, AR_TPC_CTS) |
SM(chirpTpcPow, AR_TPC_CHIRP);
OS_REG_WRITE(ah, AR_TPC, powerVal);
/* Restore user-specified settings */
if (ahp->ah_miscMode != 0)
OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
if (ahp->ah_sifstime != (u_int) -1)
ar5212SetSifsTime(ah, ahp->ah_sifstime);
if (ahp->ah_slottime != (u_int) -1)
ar5212SetSlotTime(ah, ahp->ah_slottime);
if (ahp->ah_acktimeout != (u_int) -1)
ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
if (ahp->ah_ctstimeout != (u_int) -1)
ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
if (AH_PRIVATE(ah)->ah_diagreg != 0)
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
#if 0
done:
#endif
if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
RESTORE_CCK(ah, chan, isBmode);
OS_MARK(ah, AH_MARK_RESET_DONE, 0);
return AH_TRUE;
bad:
RESTORE_CCK(ah, chan, isBmode);
OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
if (status != AH_NULL)
*status = ecode;
return AH_FALSE;
#undef FAIL
#undef N
}
/*
* Call the rf backend to change the channel.
*/
HAL_BOOL
ar5212SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
struct ath_hal_5212 *ahp = AH5212(ah);
/* Change the synth */
if (!ahp->ah_rfHal->setChannel(ah, chan))
return AH_FALSE;
return AH_TRUE;
}
/*
* This channel change evaluates whether the selected hardware can
* perform a synthesizer-only channel change (no reset). If the
* TX is not stopped, or the RFBus cannot be granted in the given
* time, the function returns false as a reset is necessary
*/
HAL_BOOL
ar5212ChannelChange(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t ulCount;
uint32_t data, synthDelay, qnum;
uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
HAL_BOOL txStopped = AH_TRUE;
HAL_CHANNEL_INTERNAL *ichan;
/*
* Map public channel to private.
*/
ichan = ath_hal_checkchannel(ah, chan);
/* TX must be stopped or RF Bus grant will not work */
for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
if (ar5212NumTxPending(ah, qnum)) {
txStopped = AH_FALSE;
break;
}
}
if (!txStopped)
return AH_FALSE;
/* Kill last Baseband Rx Frame */
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
for (ulCount = 0; ulCount < 100; ulCount++) {
if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
break;
OS_DELAY(5);
}
if (ulCount >= 100)
return AH_FALSE;
/* Change the synth */
if (!ar5212SetChannel(ah, chan))
return AH_FALSE;
/*
* Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
* Read the phy active delay register. Value is in 100ns increments.
*/
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IEEE80211_IS_CHAN_B(chan)) {
synthDelay = (4 * data) / 22;
} else {
synthDelay = data / 10;
}
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
/* Setup the transmit power values. */
if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: error init'ing transmit power\n", __func__);
return AH_FALSE;
}
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
if (IEEE80211_IS_CHAN_OFDM(chan)) {
if (IS_5413(ah) ||
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
ar5212SetSpurMitigation(ah, chan);
ar5212SetDeltaSlope(ah, chan);
}
/* Release the RFBus Grant */
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
/* Start Noise Floor Cal */
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
return AH_TRUE;
}
void
ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
{
uint32_t val;
val = OS_REG_READ(ah, AR_STA_ID1);
val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
switch (opmode) {
case HAL_M_HOSTAP:
OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
| AR_STA_ID1_KSRCH_MODE);
OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case HAL_M_IBSS:
OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
| AR_STA_ID1_KSRCH_MODE);
OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
break;
case HAL_M_STA:
case HAL_M_MONITOR:
OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
break;
}
}
/*
* Places the PHY and Radio chips into reset. A full reset
* must be called to leave this state. The PCI/MAC/PCU are
* not placed into reset as we must receive interrupt to
* re-enable the hardware.
*/
HAL_BOOL
ar5212PhyDisable(struct ath_hal *ah)
{
return ar5212SetResetReg(ah, AR_RC_BB);
}
/*
* Places all of hardware into reset
*/
HAL_BOOL
ar5212Disable(struct ath_hal *ah)
{
if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
/*
* Reset the HW - PCI must be reset after the rest of the
* device has been reset.
*/
return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
}
/*
* Places the hardware into reset and then pulls it out of reset
*
* TODO: Only write the PLL if we're changing to or from CCK mode
*
* WARNING: The order of the PLL and mode registers must be correct.
*/
HAL_BOOL
ar5212ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
/*
* Reset the HW - PCI must be reset after the rest of the
* device has been reset
*/
if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
return AH_FALSE;
/* Bring out of sleep mode (AGAIN) */
if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
return AH_FALSE;
/* Clear warm reset register */
if (!ar5212SetResetReg(ah, 0))
return AH_FALSE;
/*
* Perform warm reset before the mode/PLL/turbo registers
* are changed in order to deactivate the radio. Mode changes
* with an active radio can result in corrupted shifts to the
* radio device.
*/
/*
* Set CCK and Turbo modes correctly.
*/
if (chan != AH_NULL) { /* NB: can be null during attach */
uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
if (IS_5413(ah)) { /* NB: =>'s 5424 also */
rfMode = AR_PHY_MODE_AR5112;
if (IEEE80211_IS_CHAN_HALF(chan))
rfMode |= AR_PHY_MODE_HALF;
else if (IEEE80211_IS_CHAN_QUARTER(chan))
rfMode |= AR_PHY_MODE_QUARTER;
if (IEEE80211_IS_CHAN_CCK(chan))
phyPLL = AR_PHY_PLL_CTL_44_5112;
else
phyPLL = AR_PHY_PLL_CTL_40_5413;
} else if (IS_RAD5111(ah)) {
rfMode = AR_PHY_MODE_AR5111;
if (IEEE80211_IS_CHAN_CCK(chan))
phyPLL = AR_PHY_PLL_CTL_44;
else
phyPLL = AR_PHY_PLL_CTL_40;
if (IEEE80211_IS_CHAN_HALF(chan))
phyPLL = AR_PHY_PLL_CTL_HALF;
else if (IEEE80211_IS_CHAN_QUARTER(chan))
phyPLL = AR_PHY_PLL_CTL_QUARTER;
} else { /* 5112, 2413, 2316, 2317 */
rfMode = AR_PHY_MODE_AR5112;
if (IEEE80211_IS_CHAN_CCK(chan))
phyPLL = AR_PHY_PLL_CTL_44_5112;
else
phyPLL = AR_PHY_PLL_CTL_40_5112;
if (IEEE80211_IS_CHAN_HALF(chan))
phyPLL |= AR_PHY_PLL_CTL_HALF;
else if (IEEE80211_IS_CHAN_QUARTER(chan))
phyPLL |= AR_PHY_PLL_CTL_QUARTER;
}
if (IEEE80211_IS_CHAN_G(chan))
rfMode |= AR_PHY_MODE_DYNAMIC;
else if (IEEE80211_IS_CHAN_OFDM(chan))
rfMode |= AR_PHY_MODE_OFDM;
else
rfMode |= AR_PHY_MODE_CCK;
if (IEEE80211_IS_CHAN_5GHZ(chan))
rfMode |= AR_PHY_MODE_RF5GHZ;
else
rfMode |= AR_PHY_MODE_RF2GHZ;
turbo = IEEE80211_IS_CHAN_TURBO(chan) ?
(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
/*
* PLL, Mode, and Turbo values must be written in the correct
* order to ensure:
* - The PLL cannot be set to 44 unless the CCK or DYNAMIC
* mode bit is set
* - Turbo cannot be set at the same time as CCK or DYNAMIC
*/
if (IEEE80211_IS_CHAN_CCK(chan)) {
OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
if (curPhyPLL != phyPLL) {
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
/* Wait for the PLL to settle */
OS_DELAY(PLL_SETTLE_DELAY);
}
} else {
if (curPhyPLL != phyPLL) {
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
/* Wait for the PLL to settle */
OS_DELAY(PLL_SETTLE_DELAY);
}
OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
}
return AH_TRUE;
}
/*
* Recalibrate the lower PHY chips to account for temperature/environment
* changes.
*/
HAL_BOOL
ar5212PerCalibrationN(struct ath_hal *ah,
struct ieee80211_channel *chan,
u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
{
#define IQ_CAL_TRIES 10
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CHANNEL_INTERNAL *ichan;
int32_t qCoff, qCoffDenom;
int32_t iqCorrMeas, iCoff, iCoffDenom;
uint32_t powerMeasQ, powerMeasI;
HAL_BOOL isBmode = AH_FALSE;
OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);
*isCalDone = AH_FALSE;
ichan = ath_hal_checkchannel(ah, chan);
if (ichan == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x; no mapping\n",
__func__, chan->ic_freq, chan->ic_flags);
return AH_FALSE;
}
SAVE_CCK(ah, chan, isBmode);
if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
*isCalDone = AH_TRUE;
/* IQ calibration in progress. Check to see if it has finished. */
if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
!(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
int i;
/* IQ Calibration has finished. */
ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
*isCalDone = AH_TRUE;
/* workaround for misgated IQ Cal results */
i = 0;
do {
/* Read calibration results. */
powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
if (powerMeasI && powerMeasQ)
break;
/* Do we really need this??? */
OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_DO_IQCAL);
} while (++i < IQ_CAL_TRIES);
HALDEBUG(ah, HAL_DEBUG_PERCAL,
"%s: IQ cal finished: %d tries\n", __func__, i);
HALDEBUG(ah, HAL_DEBUG_PERCAL,
"%s: powerMeasI %u powerMeasQ %u iqCorrMeas %d\n",
__func__, powerMeasI, powerMeasQ, iqCorrMeas);
/*
* Prescale these values to remove 64-bit operation
* requirement at the loss of a little precision.
*/
iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
qCoffDenom = powerMeasQ / 128;
/* Protect against divide-by-0 and loss of sign bits. */
if (iCoffDenom != 0 && qCoffDenom >= 2) {
iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
/* IQCORR_Q_I_COFF is a signed 6 bit number */
if (iCoff < -32) {
iCoff = -32;
} else if (iCoff > 31) {
iCoff = 31;
}
/* IQCORR_Q_Q_COFF is a signed 5 bit number */
qCoff = (powerMeasI / qCoffDenom) - 128;
if (qCoff < -16) {
qCoff = -16;
} else if (qCoff > 15) {
qCoff = 15;
}
HALDEBUG(ah, HAL_DEBUG_PERCAL,
"%s: iCoff %d qCoff %d\n", __func__, iCoff, qCoff);
/* Write values and enable correction */
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
ahp->ah_bIQCalibration = IQ_CAL_DONE;
ichan->privFlags |= CHANNEL_IQVALID;
ichan->iCoff = iCoff;
ichan->qCoff = qCoff;
}
} else if (!IEEE80211_IS_CHAN_B(chan) &&
ahp->ah_bIQCalibration == IQ_CAL_DONE &&
(ichan->privFlags & CHANNEL_IQVALID) == 0) {
/*
* Start IQ calibration if configured channel has changed.
* Use a magic number of 15 based on default value.
*/
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
INIT_IQCAL_LOG_COUNT_MAX);
OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_DO_IQCAL);
ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
}
/* XXX EAR */
if (longCal) {
/* Check noise floor results */
ar5212GetNf(ah, chan);
if (!IEEE80211_IS_CHAN_CWINT(chan)) {
/* Perform cal for 5Ghz channels and any OFDM on 5112 */
if (IEEE80211_IS_CHAN_5GHZ(chan) ||
(IS_RAD5112(ah) && IEEE80211_IS_CHAN_OFDM(chan)))
ar5212RequestRfgain(ah);
}
}
RESTORE_CCK(ah, chan, isBmode);
return AH_TRUE;
#undef IQ_CAL_TRIES
}
HAL_BOOL
ar5212PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
HAL_BOOL *isIQdone)
{
return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
}
HAL_BOOL
ar5212ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
HAL_CHANNEL_INTERNAL *ichan;
ichan = ath_hal_checkchannel(ah, chan);
if (ichan == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u/0x%x; no mapping\n",
__func__, chan->ic_freq, chan->ic_flags);
return AH_FALSE;
}
ichan->privFlags &= ~CHANNEL_IQVALID;
return AH_TRUE;
}
/**************************************************************
* ar5212MacStop
*
* Disables all active QCUs and ensure that the mac is in a
* quiessence state.
*/
static HAL_BOOL
ar5212MacStop(struct ath_hal *ah)
{
HAL_BOOL status;
uint32_t count;
uint32_t pendFrameCount;
uint32_t macStateFlag;
uint32_t queue;
status = AH_FALSE;
/* Disable Rx Operation ***********************************/
OS_REG_SET_BIT(ah, AR_CR, AR_CR_RXD);
/* Disable TX Operation ***********************************/
#ifdef NOT_YET
ar5212SetTxdpInvalid(ah);
#endif
OS_REG_SET_BIT(ah, AR_Q_TXD, AR_Q_TXD_M);
/* Polling operation for completion of disable ************/
macStateFlag = TX_ENABLE_CHECK | RX_ENABLE_CHECK;
for (count = 0; count < MAX_RESET_WAIT; count++) {
if (macStateFlag & RX_ENABLE_CHECK) {
if (!OS_REG_IS_BIT_SET(ah, AR_CR, AR_CR_RXE)) {
macStateFlag &= ~RX_ENABLE_CHECK;
}
}
if (macStateFlag & TX_ENABLE_CHECK) {
if (!OS_REG_IS_BIT_SET(ah, AR_Q_TXE, AR_Q_TXE_M)) {
macStateFlag &= ~TX_ENABLE_CHECK;
macStateFlag |= TX_QUEUEPEND_CHECK;
}
}
if (macStateFlag & TX_QUEUEPEND_CHECK) {
pendFrameCount = 0;
for (queue = 0; queue < AR_NUM_DCU; queue++) {
pendFrameCount += OS_REG_READ(ah,
AR_Q0_STS + (queue * 4)) &
AR_Q_STS_PEND_FR_CNT;
}
if (pendFrameCount == 0) {
macStateFlag &= ~TX_QUEUEPEND_CHECK;
}
}
if (macStateFlag == 0) {
status = AH_TRUE;
break;
}
OS_DELAY(50);
}
if (status != AH_TRUE) {
HALDEBUG(ah, HAL_DEBUG_RESET,
"%s:Failed to stop the MAC state 0x%x\n",
__func__, macStateFlag);
}
return status;
}
/*
* Write the given reset bit mask into the reset register
*/
static HAL_BOOL
ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
{
uint32_t mask = resetMask ? resetMask : ~0;
HAL_BOOL rt;
/* Never reset the PCIE core */
if (AH_PRIVATE(ah)->ah_ispcie) {
resetMask &= ~AR_RC_PCI;
}
if (resetMask & (AR_RC_MAC | AR_RC_PCI)) {
/*
* To ensure that the driver can reset the
* MAC, wake up the chip
*/
rt = ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE);
if (rt != AH_TRUE) {
return rt;
}
/*
* Disable interrupts
*/
OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
OS_REG_READ(ah, AR_IER);
if (ar5212MacStop(ah) != AH_TRUE) {
/*
* Failed to stop the MAC gracefully; let's be more forceful then
*/
/* need some delay before flush any pending MMR writes */
OS_DELAY(15);
OS_REG_READ(ah, AR_RXDP);
resetMask |= AR_RC_MAC | AR_RC_BB;
/* _Never_ reset PCI Express core */
if (! AH_PRIVATE(ah)->ah_ispcie) {
resetMask |= AR_RC_PCI;
}
#if 0
/*
* Flush the park address of the PCI controller
*/
/* Read PCI slot information less than Hainan revision */
if (AH_PRIVATE(ah)->ah_bustype == HAL_BUS_TYPE_PCI) {
if (!IS_5112_REV5_UP(ah)) {
#define PCI_COMMON_CONFIG_STATUS 0x06
u_int32_t i;
u_int16_t reg16;
for (i = 0; i < 32; i++) {
ath_hal_read_pci_config_space(ah,
PCI_COMMON_CONFIG_STATUS,
®16, sizeof(reg16));
}
}
#undef PCI_COMMON_CONFIG_STATUS
}
#endif
} else {
/*
* MAC stopped gracefully; no need to warm-reset the PCI bus
*/
resetMask &= ~AR_RC_PCI;
/* need some delay before flush any pending MMR writes */
OS_DELAY(15);
OS_REG_READ(ah, AR_RXDP);
}
}
(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
OS_REG_WRITE(ah, AR_RC, resetMask);
OS_DELAY(15); /* need to wait at least 128 clocks
when reseting PCI before read */
mask &= (AR_RC_MAC | AR_RC_BB);
resetMask &= (AR_RC_MAC | AR_RC_BB);
rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
if ((resetMask & AR_RC_MAC) == 0) {
if (isBigEndian()) {
/*
* Set CFG, little-endian for descriptor accesses.
*/
mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
#ifndef AH_NEED_DESC_SWAP
mask |= AR_CFG_SWTD;
#endif
OS_REG_WRITE(ah, AR_CFG, mask);
} else
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
(void) OS_REG_READ(ah, AR_ISR_RAC);
}
/* track PHY power state so we don't try to r/w BB registers */
AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
return rt;
}
int16_t
ar5212GetNoiseFloor(struct ath_hal *ah)
{
int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
return nf;
}
static HAL_BOOL
getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
int16_t *nft)
{
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
case IEEE80211_CHAN_A:
*nft = ee->ee_noiseFloorThresh[headerInfo11A];
break;
case IEEE80211_CHAN_B:
*nft = ee->ee_noiseFloorThresh[headerInfo11B];
break;
case IEEE80211_CHAN_G:
case IEEE80211_CHAN_PUREG: /* NB: really 108G */
*nft = ee->ee_noiseFloorThresh[headerInfo11G];
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel flags %u/0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
return AH_FALSE;
}
return AH_TRUE;
}
/*
* Setup the noise floor cal history buffer.
*/
void
ar5212InitNfCalHistBuffer(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
int i;
ahp->ah_nfCalHist.first_run = 1;
ahp->ah_nfCalHist.currIndex = 0;
ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
}
/*
* Add a noise floor value to the ring buffer.
*/
static __inline void
updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
{
h->nfCalBuffer[h->currIndex] = nf;
if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
h->currIndex = 0;
}
/*
* Return the median noise floor value in the ring buffer.
*/
int16_t
ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
{
int16_t sort[AR512_NF_CAL_HIST_MAX];
int i, j;
OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
if (sort[j] > sort[j-1]) {
int16_t nf = sort[j];
sort[j] = sort[j-1];
sort[j-1] = nf;
}
}
}
return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
}
/*
* Read the NF and check it against the noise floor threshold
*/
int16_t
ar5212GetNf(struct ath_hal *ah, struct ieee80211_channel *chan)
{
struct ath_hal_5212 *ahp = AH5212(ah);
struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
int16_t nf, nfThresh;
int32_t val;
if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: NF did not complete in calibration window\n", __func__);
ichan->rawNoiseFloor = h->privNF; /* most recent value */
return ichan->rawNoiseFloor;
}
/*
* Finished NF cal, check against threshold.
*/
nf = ar5212GetNoiseFloor(ah);
if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
if (nf > nfThresh) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: noise floor failed detected; detected %u, "
"threshold %u\n", __func__, nf, nfThresh);
/*
* NB: Don't discriminate 2.4 vs 5Ghz, if this
* happens it indicates a problem regardless
* of the band.
*/
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
nf = 0;
}
} else
nf = 0;
/*
* Pass through histogram and write median value as
* calculated from the accrued window. We require a
* full window of in-range values to be seen before we
* start using the history.
*/
updateNFHistBuff(h, nf);
if (h->first_run) {
if (nf < AR5212_CCA_MIN_BAD_VALUE ||
nf > AR5212_CCA_MAX_HIGH_VALUE) {
nf = AR5212_CCA_MAX_GOOD_VALUE;
h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
} else if (--(h->invalidNFcount) == 0) {
h->first_run = 0;
h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
} else {
nf = AR5212_CCA_MAX_GOOD_VALUE;
}
} else {
h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
}
val = OS_REG_READ(ah, AR_PHY(25));
val &= 0xFFFFFE00;
val |= (((uint32_t)nf << 1) & 0x1FF);
OS_REG_WRITE(ah, AR_PHY(25), val);
OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
#ifdef AH_DEBUG
ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
__func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
#endif
}
/*
* Now load a high maxCCAPower value again so that we're
* not capped by the median we just loaded
*/
val &= 0xFFFFFE00;
val |= (((uint32_t)(-50) << 1) & 0x1FF);
OS_REG_WRITE(ah, AR_PHY(25), val);
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
return (ichan->rawNoiseFloor = nf);
}
/*
* Set up compression configuration registers
*/
void
ar5212SetCompRegs(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
int i;
/* Check if h/w supports compression */
if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
return;
OS_REG_WRITE(ah, AR_DCCFG, 1);
OS_REG_WRITE(ah, AR_CCFG,
(AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
OS_REG_WRITE(ah, AR_CCFG,
OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
OS_REG_WRITE(ah, AR_CCUCFG,
AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
OS_REG_WRITE(ah, AR_CPCOVF, 0);
/* reset decompression mask */
for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
OS_REG_WRITE(ah, AR_DCM_A, i);
OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
}
}
HAL_BOOL
ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
const struct ieee80211_channel *chan)
{
#define ANT_SWITCH_TABLE1 AR_PHY(88)
#define ANT_SWITCH_TABLE2 AR_PHY(89)
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
uint32_t antSwitchA, antSwitchB;
int ix;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
HALASSERT(ahp->ah_phyPowerOn);
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
case IEEE80211_CHAN_A:
ix = 0;
break;
case IEEE80211_CHAN_G:
case IEEE80211_CHAN_PUREG: /* NB: 108G */
ix = 2;
break;
case IEEE80211_CHAN_B:
if (IS_2425(ah) || IS_2417(ah)) {
/* NB: Nala/Swan: 11b is handled using 11g */
ix = 2;
} else
ix = 1;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
antSwitchA = ee->ee_antennaControl[1][ix]
| (ee->ee_antennaControl[2][ix] << 6)
| (ee->ee_antennaControl[3][ix] << 12)
| (ee->ee_antennaControl[4][ix] << 18)
| (ee->ee_antennaControl[5][ix] << 24)
;
antSwitchB = ee->ee_antennaControl[6][ix]
| (ee->ee_antennaControl[7][ix] << 6)
| (ee->ee_antennaControl[8][ix] << 12)
| (ee->ee_antennaControl[9][ix] << 18)
| (ee->ee_antennaControl[10][ix] << 24)
;
/*
* For fixed antenna, give the same setting for both switch banks
*/
switch (settings) {
case HAL_ANT_FIXED_A:
antSwitchB = antSwitchA;
break;
case HAL_ANT_FIXED_B:
antSwitchA = antSwitchB;
break;
case HAL_ANT_VARIABLE:
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
__func__, settings);
return AH_FALSE;
}
if (antSwitchB == antSwitchA) {
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
"%s: Setting fast diversity off.\n", __func__);
OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
ahp->ah_diversity = AH_FALSE;
} else {
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
"%s: Setting fast diversity on.\n", __func__);
OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
ahp->ah_diversity = AH_TRUE;
}
ahp->ah_antControl = settings;
OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
return AH_TRUE;
#undef ANT_SWITCH_TABLE2
#undef ANT_SWITCH_TABLE1
}
HAL_BOOL
ar5212IsSpurChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint16_t freq = ath_hal_gethwchannel(ah, chan);
uint32_t clockFreq =
((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
return ( ((freq % clockFreq) != 0)
&& (((freq % clockFreq) < 10)
|| (((freq) % clockFreq) > 22)) );
}
/*
* Read EEPROM header info and program the device for correct operation
* given the channel value.
*/
HAL_BOOL
ar5212SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
#define NO_FALSE_DETECT_BACKOFF 2
#define CB22_FALSE_DETECT_BACKOFF 6
#define AR_PHY_BIS(_ah, _reg, _mask, _val) \
OS_REG_WRITE(_ah, AR_PHY(_reg), \
(OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
int arrayMode, falseDectectBackoff;
int is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
int8_t adcDesiredSize, pgaDesiredSize;
uint16_t switchSettling, txrxAtten, rxtxMargin;
int iCoff, qCoff;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
case IEEE80211_CHAN_A:
case IEEE80211_CHAN_ST:
arrayMode = headerInfo11A;
if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
AR_PHY_FRAME_CTL_TX_CLIP,
ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
break;
case IEEE80211_CHAN_B:
arrayMode = headerInfo11B;
break;
case IEEE80211_CHAN_G:
case IEEE80211_CHAN_108G:
arrayMode = headerInfo11G;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
/* Set the antenna register(s) correctly for the chip revision */
AR_PHY_BIS(ah, 68, 0xFFFFFC06,
(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
/* Set the Noise Floor Thresh on ar5211 devices */
OS_REG_WRITE(ah, AR_PHY(90),
(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
| (1 << 9));
if (ee->ee_version >= AR_EEPROM_VER5_0 && IEEE80211_IS_CHAN_TURBO(chan)) {
switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
} else {
switchSettling = ee->ee_switchSettling[arrayMode];
adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
txrxAtten = ee->ee_txrxAtten[is2GHz];
rxtxMargin = ee->ee_rxtxMargin[is2GHz];
}
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH, switchSettling);
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
OS_REG_WRITE(ah, AR_PHY(13),
(ee->ee_txEndToXPAOff[arrayMode] << 24)
| (ee->ee_txEndToXPAOff[arrayMode] << 16)
| (ee->ee_txFrameToXPAOn[arrayMode] << 8)
| ee->ee_txFrameToXPAOn[arrayMode]);
AR_PHY_BIS(ah, 10, 0xFFFF00FF,
ee->ee_txEndToXLNAOn[arrayMode] << 8);
AR_PHY_BIS(ah, 25, 0xFFF80FFF,
(ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
/*
* False detect backoff - suspected 32 MHz spur causes false
* detects in OFDM, causing Tx Hangs. Decrease weak signal
* sensitivity for this card.
*/
falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
if (ee->ee_version < AR_EEPROM_VER3_3) {
/* XXX magic number */
if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
IEEE80211_IS_CHAN_OFDM(chan))
falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
} else {
if (ar5212IsSpurChannel(ah, chan))
falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
}
AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
if (ichan->privFlags & CHANNEL_IQVALID) {
iCoff = ichan->iCoff;
qCoff = ichan->qCoff;
} else {
iCoff = ee->ee_iqCalI[is2GHz];
qCoff = ee->ee_iqCalQ[is2GHz];
}
/* write previous IQ results */
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
if (ee->ee_version >= AR_EEPROM_VER4_1) {
if (!IEEE80211_IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
}
if (ee->ee_version >= AR_EEPROM_VER5_1) {
/* for now always disabled */
OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_ENABLE, 0);
}
return AH_TRUE;
#undef AR_PHY_BIS
#undef NO_FALSE_DETECT_BACKOFF
#undef CB22_FALSE_DETECT_BACKOFF
}
/*
* Apply Spur Immunity to Boards that require it.
* Applies only to OFDM RX operation.
*/
void
ar5212SetSpurMitigation(struct ath_hal *ah,
const struct ieee80211_channel *chan)
{
uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
int16_t numBinOffsets;
static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
static const uint16_t magMapFor3[3] = {1, 2, 1};
const uint16_t *pMagMap;
HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
uint32_t val;
#define CHAN_TO_SPUR(_f, _freq) ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
if (IS_2417(ah)) {
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
__func__);
return;
}
curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
if (ichan->mainSpur) {
/* Pull out the saved spur value */
finalSpur = ichan->mainSpur;
} else {
/*
* Check if spur immunity should be performed for this channel
* Should only be performed once per channel and then saved
*/
finalSpur = AR_NO_SPUR;
spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
if (IEEE80211_IS_CHAN_TURBO(chan))
spurDetectWidth *= 2;
/* Decide if any spur affects the current channel */
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
if (spurChan == AR_NO_SPUR) {
break;
}
if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
(curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
finalSpur = spurChan & HAL_SPUR_VAL_MASK;
break;
}
}
/* Save detected spur (or no spur) for this channel */
ichan->mainSpur = finalSpur;
}
/* Write spur immunity data */
if (finalSpur == AR_NO_SPUR) {
/* Disable Spur Immunity Regs if they appear set */
if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
/* Clear Spur Delta Phase, Spur Freq, and enable bits */
OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
/* Clear pilot masks */
OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
/* Clear magnitude masks */
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
}
} else {
spurOffset = finalSpur - curChanAsSpur;
/*
* Spur calculations:
* spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
* spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
*/
if (IEEE80211_IS_CHAN_TURBO(chan)) {
/* Chip Frequency & sampleFrequency are 80 MHz */
spurDeltaPhase = (spurOffset << 16) / 25;
spurFreqSd = spurDeltaPhase >> 10;
binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
} else if (IEEE80211_IS_CHAN_G(chan)) {
/* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
spurFreqSd = (spurOffset << 8) / 55;
spurDeltaPhase = (spurOffset << 17) / 25;
binWidth = HAL_BIN_WIDTH_BASE_100HZ;
} else {
HALASSERT(!IEEE80211_IS_CHAN_B(chan));
/* Chip Frequency & sampleFrequency are 40 MHz */
spurDeltaPhase = (spurOffset << 17) / 25;
spurFreqSd = spurDeltaPhase >> 10;
binWidth = HAL_BIN_WIDTH_BASE_100HZ;
}
/* Compute Pilot Mask */
binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
/* The spur is on a bin if it's remainder at times 16 is 0 */
if (binOffsetNumT16 & 0xF) {
numBinOffsets = 4;
pMagMap = magMapFor4;
} else {
numBinOffsets = 3;
pMagMap = magMapFor3;
}
for (i = 0; i < numBinOffsets; i++) {
if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"Too man bins in spur mitigation\n");
return;
}
/* Get Pilot Mask values */
curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
if (curBinOffset <= 25)
pilotMask[0] |= 1 << curBinOffset;
else if (curBinOffset >= 27)
pilotMask[0] |= 1 << (curBinOffset - 1);
} else if ((curBinOffset >= 33) && (curBinOffset <= 52))
pilotMask[1] |= 1 << (curBinOffset - 33);
/* Get viterbi values */
if ((curBinOffset >= -1) && (curBinOffset <= 14))
binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
else if ((curBinOffset >= 15) && (curBinOffset <= 30))
binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
else if ((curBinOffset >= 31) && (curBinOffset <= 46))
binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
else if((curBinOffset >= 47) && (curBinOffset <= 53))
binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
}
/* Write Spur Delta Phase, Spur Freq, and enable bits */
OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
/* Write pilot masks */
OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
/* Write magnitude masks */
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
}
#undef CHAN_TO_SPUR
}
/*
* Delta slope coefficient computation.
* Required for OFDM operation.
*/
void
ar5212SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
#define COEF_SCALE_S 24
#define INIT_CLOCKMHZSCALED 0x64000000
uint16_t freq = ath_hal_gethwchannel(ah, chan);
unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
if (IEEE80211_IS_CHAN_TURBO(chan))
clockMhzScaled *= 2;
/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
/* scale for selected channel bandwidth */
if (IEEE80211_IS_CHAN_HALF(chan)) {
clockMhzScaled = clockMhzScaled >> 1;
} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
clockMhzScaled = clockMhzScaled >> 2;
}
/*
* ALGO -> coef = 1e8/fcarrier*fclock/40;
* scaled coef to provide precision for this floating calculation
*/
coef_scaled = clockMhzScaled / freq;
/*
* ALGO -> coef_exp = 14-floor(log2(coef));
* floor(log2(x)) is the highest set bit position
*/
for (coef_exp = 31; coef_exp > 0; coef_exp--)
if ((coef_scaled >> coef_exp) & 0x1)
break;
/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
HALASSERT(coef_exp);
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
/*
* ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
* The coefficient is already shifted up for scaling
*/
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
ds_coef_exp = coef_exp - 16;
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
#undef INIT_CLOCKMHZSCALED
#undef COEF_SCALE_S
}
/*
* Set a limit on the overall output power. Used for dynamic
* transmit power control and the like.
*
* NB: limit is in units of 0.5 dbM.
*/
HAL_BOOL
ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
{
/* XXX blech, construct local writable copy */
struct ieee80211_channel dummy = *AH_PRIVATE(ah)->ah_curchan;
uint16_t dummyXpdGains[2];
HAL_BOOL isBmode;
SAVE_CCK(ah, &dummy, isBmode);
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
return ar5212SetTransmitPower(ah, &dummy, dummyXpdGains);
}
/*
* Set the transmit power in the baseband for the given
* operating channel and mode.
*/
HAL_BOOL
ar5212SetTransmitPower(struct ath_hal *ah,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
#define POW_OFDM(_r, _s) (((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
#define POW_CCK(_r, _s) (((_r) & 0x3f) << (_s))
#define N(a) (sizeof (a) / sizeof (a[0]))
static const uint16_t tpcScaleReductionTable[5] =
{ 0, 3, 6, 9, MAX_RATE_POWER };
struct ath_hal_5212 *ahp = AH5212(ah);
uint16_t freq = ath_hal_gethwchannel(ah, chan);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
int16_t minPower, maxPower, tpcInDb, powerLimit;
int i;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
else
tpcInDb = 0;
if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
AH_TRUE, &minPower, &maxPower)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
__func__);
return AH_FALSE;
}
if (!ahp->ah_rfHal->setPowerTable(ah,
&minPower, &maxPower, chan, rfXpdGain)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
__func__);
return AH_FALSE;
}
/*
* Adjust XR power/rate up by 2 dB to account for greater peak
* to avg ratio - except in newer avg power designs
*/
if (!IS_2413(ah) && !IS_5413(ah))
ahp->ah_ratesArray[15] += 4;
/*
* txPowerIndexOffset is set by the SetPowerTable() call -
* adjust the rate table
*/
for (i = 0; i < N(ahp->ah_ratesArray); i++) {
ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
if (ahp->ah_ratesArray[i] > 63)
ahp->ah_ratesArray[i] = 63;
}
if (ee->ee_eepMap < 2) {
/*
* Correct gain deltas for 5212 G operation -
* Removed with revised chipset
*/
if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
IEEE80211_IS_CHAN_G(chan)) {
uint16_t cckOfdmPwrDelta;
if (freq == 2484)
cckOfdmPwrDelta = SCALE_OC_DELTA(
ee->ee_cckOfdmPwrDelta -
ee->ee_scaledCh14FilterCckDelta);
else
cckOfdmPwrDelta = SCALE_OC_DELTA(
ee->ee_cckOfdmPwrDelta);
ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
}
/*
* Finally, write the power values into the
* baseband power table
*/
for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
| (((ahp->ah_pcdacTable[2*i] << 8) | 0xff) & 0xffff)
);
}
}
/* Write the OFDM power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
POW_OFDM(ahp->ah_ratesArray[3], 24)
| POW_OFDM(ahp->ah_ratesArray[2], 16)
| POW_OFDM(ahp->ah_ratesArray[1], 8)
| POW_OFDM(ahp->ah_ratesArray[0], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
POW_OFDM(ahp->ah_ratesArray[7], 24)
| POW_OFDM(ahp->ah_ratesArray[6], 16)
| POW_OFDM(ahp->ah_ratesArray[5], 8)
| POW_OFDM(ahp->ah_ratesArray[4], 0)
);
/* Write the CCK power per rate set */
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
POW_CCK(ahp->ah_ratesArray[10], 24)
| POW_CCK(ahp->ah_ratesArray[9], 16)
| POW_CCK(ahp->ah_ratesArray[15], 8) /* XR target power */
| POW_CCK(ahp->ah_ratesArray[8], 0)
);
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
POW_CCK(ahp->ah_ratesArray[14], 24)
| POW_CCK(ahp->ah_ratesArray[13], 16)
| POW_CCK(ahp->ah_ratesArray[12], 8)
| POW_CCK(ahp->ah_ratesArray[11], 0)
);
/*
* Set max power to 30 dBm and, optionally,
* enable TPC in tx descriptors.
*/
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
(ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
return AH_TRUE;
#undef N
#undef POW_CCK
#undef POW_OFDM
}
/*
* Sets the transmit power in the baseband for the given
* operating channel and mode.
*/
static HAL_BOOL
ar5212SetRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
int16_t *pMinPower, int16_t *pMaxPower)
{
struct ath_hal_5212 *ahp = AH5212(ah);
uint16_t freq = ath_hal_gethwchannel(ah, chan);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
uint16_t *rpow = ahp->ah_ratesArray;
uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
uint16_t twiceMaxRDPower = MAX_RATE_POWER;
int i;
uint8_t cfgCtl;
int8_t twiceAntennaGain, twiceAntennaReduction;
const RD_EDGES_POWER *rep;
TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
int16_t scaledPower, maxAvailPower = 0;
int16_t r13, r9, r7, r0;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
twiceMaxRDPower = chan->ic_maxregpower * 2;
*pMaxPower = -MAX_RATE_POWER;
*pMinPower = MAX_RATE_POWER;
/* Get conformance test limit maximum for this channel */
cfgCtl = ath_hal_getctl(ah, chan);
for (i = 0; i < ee->ee_numCtls; i++) {
uint16_t twiceMinEdgePower;
if (ee->ee_ctl[i] == 0)
continue;
if (ee->ee_ctl[i] == cfgCtl ||
cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
twiceMinEdgePower = ar5212GetMaxEdgePower(freq, rep);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
/* Find the minimum of all CTL edge powers that apply to this channel */
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
} else {
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
if (IEEE80211_IS_CHAN_G(chan)) {
/* Check for a CCK CTL for 11G CCK powers */
cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
for (i = 0; i < ee->ee_numCtls; i++) {
uint16_t twiceMinEdgePowerCck;
if (ee->ee_ctl[i] == 0)
continue;
if (ee->ee_ctl[i] == cfgCtl ||
cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
twiceMinEdgePowerCck = ar5212GetMaxEdgePower(freq, rep);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
/* Find the minimum of all CTL edge powers that apply to this channel */
twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
} else {
twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
break;
}
}
}
} else {
/* Set the 11B cck edge power to the one found before */
twiceMaxEdgePowerCck = twiceMaxEdgePower;
}
/* Get Antenna Gain reduction */
if (IEEE80211_IS_CHAN_5GHZ(chan)) {
ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
} else {
ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
}
twiceAntennaReduction =
ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
if (IEEE80211_IS_CHAN_OFDM(chan)) {
/* Get final OFDM target powers */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
ee->ee_numTargetPwr_11g, &targetPowerOfdm);
} else {
ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
ee->ee_numTargetPwr_11a, &targetPowerOfdm);
}
/* Get Maximum OFDM power */
/* Minimum of target and edge powers */
scaledPower = AH_MIN(twiceMaxEdgePower,
twiceMaxRDPower - twiceAntennaReduction);
/*
* If turbo is set, reduce power to keep power
* consumption under 2 Watts. Note that we always do
* this unless specially configured. Then we limit
* power only for non-AP operation.
*/
if (IEEE80211_IS_CHAN_TURBO(chan)
#ifdef AH_ENABLE_AP_SUPPORT
&& AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
#endif
) {
/*
* If turbo is set, reduce power to keep power
* consumption under 2 Watts
*/
if (ee->ee_version >= AR_EEPROM_VER3_1)
scaledPower = AH_MIN(scaledPower,
ee->ee_turbo2WMaxPower5);
/*
* EEPROM version 4.0 added an additional
* constraint on 2.4GHz channels.
*/
if (ee->ee_version >= AR_EEPROM_VER4_0 &&
IEEE80211_IS_CHAN_2GHZ(chan))
scaledPower = AH_MIN(scaledPower,
ee->ee_turbo2WMaxPower2);
}
maxAvailPower = AH_MIN(scaledPower,
targetPowerOfdm.twicePwr6_24);
/* Reduce power by max regulatory domain allowed restrictions */
scaledPower = maxAvailPower - (tpcScaleReduction * 2);
scaledPower = (scaledPower < 0) ? 0 : scaledPower;
scaledPower = AH_MIN(scaledPower, powerLimit);
if (commit) {
/* Set OFDM rates 9, 12, 18, 24 */
r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
/* Set OFDM rates 36, 48, 54, XR */
rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
if (ee->ee_version >= AR_EEPROM_VER4_0) {
/* Setup XR target power from EEPROM */
rpow[15] = AH_MIN(scaledPower, IEEE80211_IS_CHAN_2GHZ(chan) ?
ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
} else {
/* XR uses 6mb power */
rpow[15] = rpow[0];
}
ahp->ah_ofdmTxPower = *pMaxPower;
} else {
r0 = scaledPower;
r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
}
*pMinPower = r7;
*pMaxPower = r0;
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
"%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
"TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
__func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
twiceMaxEdgePower, tpcScaleReduction * 2,
chan->ic_freq, chan->ic_flags,
maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
}
if (IEEE80211_IS_CHAN_CCK(chan)) {
/* Get final CCK target powers */
ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
ee->ee_numTargetPwr_11b, &targetPowerCck);
/* Reduce power by max regulatory domain allowed restrictions */
scaledPower = AH_MIN(twiceMaxEdgePowerCck,
twiceMaxRDPower - twiceAntennaReduction);
if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
/* Reduce power by user selection */
scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
scaledPower = (scaledPower < 0) ? 0 : scaledPower;
scaledPower = AH_MIN(scaledPower, powerLimit);
if (commit) {
/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
rpow[8] = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
r9 = rpow[9] = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
rpow[10] = rpow[9];
rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
rpow[12] = rpow[11];
r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
rpow[14] = rpow[13];
} else {
r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
}
/* Set min/max power based off OFDM values or initialization */
if (r13 < *pMinPower)
*pMinPower = r13;
if (r9 > *pMaxPower)
*pMaxPower = r9;
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
"%s: cck: MaxRD: %d MaxCTL: %d "
"TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
__func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
tpcScaleReduction * 2, chan->ic_freq, chan->ic_flags,
maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
}
if (commit) {
ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
}
return AH_TRUE;
}
HAL_BOOL
ar5212GetChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan)
{
struct ath_hal_5212 *ahp = AH5212(ah);
#if 0
static const uint16_t tpcScaleReductionTable[5] =
{ 0, 3, 6, 9, MAX_RATE_POWER };
int16_t tpcInDb, powerLimit;
#endif
int16_t minPower, maxPower;
/*
* Get Pier table max and min powers.
*/
if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
/* NB: rf code returns 1/4 dBm units, convert */
chan->ic_maxpower = maxPower / 2;
chan->ic_minpower = minPower / 2;
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no min/max power for %u/0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
chan->ic_maxpower = MAX_RATE_POWER;
chan->ic_minpower = 0;
}
#if 0
/*
* Now adjust to reflect any global scale and/or CTL's.
* (XXX is that correct?)
*/
powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
else
tpcInDb = 0;
if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
AH_FALSE, &minPower, &maxPower)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: unable to find max/min power\n",__func__);
return AH_FALSE;
}
if (maxPower < chan->ic_maxpower)
chan->ic_maxpower = maxPower;
if (minPower < chan->ic_minpower)
chan->ic_minpower = minPower;
HALDEBUG(ah, HAL_DEBUG_RESET,
"Chan %d: MaxPow = %d MinPow = %d\n",
chan->ic_freq, chan->ic_maxpower, chans->ic_minpower);
#endif
return AH_TRUE;
}
/*
* Correct for the gain-delta between ofdm and cck mode target
* powers. Write the results to the rate table and the power table.
*
* Conventions :
* 1. rpow[ii] is the integer value of 2*(desired power
* for the rate ii in dBm) to provide 0.5dB resolution. rate
* mapping is as following :
* [0..7] --> ofdm 6, 9, .. 48, 54
* [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
* [15] --> XR (all rates get the same power)
* 2. powv[ii] is the pcdac corresponding to ii/2 dBm.
*/
static void
ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
{
#define N(_a) (sizeof(_a) / sizeof(_a[0]))
struct ath_hal_5212 *ahp = AH5212(ah);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
int16_t ratesIndex[N(ahp->ah_ratesArray)];
uint16_t ii, jj, iter;
int32_t cckIndex;
int16_t gainDeltaAdjust;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
/* make a local copy of desired powers as initial indices */
OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
/* fix only the CCK indices */
for (ii = 8; ii < 15; ii++) {
/* apply a gain_delta correction of -15 for CCK */
ratesIndex[ii] -= gainDeltaAdjust;
/* Now check for contention with all ofdm target powers */
jj = 0;
iter = 0;
/* indicates not all ofdm rates checked forcontention yet */
while (jj < 16) {
if (ratesIndex[ii] < 0)
ratesIndex[ii] = 0;
if (jj == 8) { /* skip CCK rates */
jj = 15;
continue;
}
if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
if (ahp->ah_ratesArray[jj] == 0)
ratesIndex[ii]++;
else if (iter > 50) {
/*
* To avoid pathological case of of
* dm target powers 0 and 0.5dBm
*/
ratesIndex[ii]++;
} else
ratesIndex[ii]--;
/* check with all rates again */
jj = 0;
iter++;
} else
jj++;
}
if (ratesIndex[ii] >= PWR_TABLE_SIZE)
ratesIndex[ii] = PWR_TABLE_SIZE -1;
cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
if (cckIndex < 0)
cckIndex = 0;
/*
* Validate that the indexes for the powv are not
* out of bounds.
*/
HALASSERT(cckIndex < PWR_TABLE_SIZE);
HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
ahp->ah_pcdacTable[ratesIndex[ii]] =
ahp->ah_pcdacTable[cckIndex];
}
/* Override rate per power table with new values */
for (ii = 8; ii < 15; ii++)
ahp->ah_ratesArray[ii] = ratesIndex[ii];
#undef N
}
/*
* Find the maximum conformance test limit for the given channel and CTL info
*/
static uint16_t
ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
{
/* temp array for holding edge channels */
uint16_t tempChannelList[NUM_EDGES];
uint16_t clo, chi, twiceMaxEdgePower;
int i, numEdges;
/* Get the edge power */
for (i = 0; i < NUM_EDGES; i++) {
if (pRdEdgesPower[i].rdEdge == 0)
break;
tempChannelList[i] = pRdEdgesPower[i].rdEdge;
}
numEdges = i;
ar5212GetLowerUpperValues(channel, tempChannelList,
numEdges, &clo, &chi);
/* Get the index for the lower channel */
for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
;
/* Is lower channel ever outside the rdEdge? */
HALASSERT(i != numEdges);
if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
/*
* If there's an exact channel match or an inband flag set
* on the lower channel use the given rdEdgePower
*/
twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
HALASSERT(twiceMaxEdgePower > 0);
} else
twiceMaxEdgePower = MAX_RATE_POWER;
return twiceMaxEdgePower;
}
/*
* Returns interpolated or the scaled up interpolated value
*/
static uint16_t
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
uint16_t targetLeft, uint16_t targetRight)
{
uint16_t rv;
int16_t lRatio;
/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
if ((targetLeft * targetRight) == 0)
return 0;
if (srcRight != srcLeft) {
/*
* Note the ratio always need to be scaled,
* since it will be a fraction.
*/
lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
if (lRatio < 0) {
/* Return as Left target if value would be negative */
rv = targetLeft;
} else if (lRatio > EEP_SCALE) {
/* Return as Right target if Ratio is greater than 100% (SCALE) */
rv = targetRight;
} else {
rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
targetLeft) / EEP_SCALE;
}
} else {
rv = targetLeft;
}
return rv;
}
/*
* Return the four rates of target power for the given target power table
* channel, and number of channels
*/
static void
ar5212GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
const TRGT_POWER_INFO *powInfo,
uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
{
uint16_t freq = ath_hal_gethwchannel(ah, chan);
/* temp array for holding target power channels */
uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
uint16_t clo, chi, ixlo, ixhi;
int i;
/* Copy the target powers into the temp channel list */
for (i = 0; i < numChannels; i++)
tempChannelList[i] = powInfo[i].testChannel;
ar5212GetLowerUpperValues(freq, tempChannelList,
numChannels, &clo, &chi);
/* Get the indices for the channel */
ixlo = ixhi = 0;
for (i = 0; i < numChannels; i++) {
if (clo == tempChannelList[i]) {
ixlo = i;
}
if (chi == tempChannelList[i]) {
ixhi = i;
break;
}
}
/*
* Get the lower and upper channels, target powers,
* and interpolate between them.
*/
pNewPower->twicePwr6_24 = interpolate(freq, clo, chi,
powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
pNewPower->twicePwr36 = interpolate(freq, clo, chi,
powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
pNewPower->twicePwr48 = interpolate(freq, clo, chi,
powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
pNewPower->twicePwr54 = interpolate(freq, clo, chi,
powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
}
static uint32_t
udiff(uint32_t u, uint32_t v)
{
return (u >= v ? u - v : v - u);
}
/*
* Search a list for a specified value v that is within
* EEP_DELTA of the search values. Return the closest
* values in the list above and below the desired value.
* EEP_DELTA is a factional value; everything is scaled
* so only integer arithmetic is used.
*
* NB: the input list is assumed to be sorted in ascending order
*/
void
ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
uint16_t *vlo, uint16_t *vhi)
{
uint32_t target = v * EEP_SCALE;
uint16_t *ep = lp+listSize;
/*
* Check first and last elements for out-of-bounds conditions.
*/
if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
*vlo = *vhi = lp[0];
return;
}
if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
*vlo = *vhi = ep[-1];
return;
}
/* look for value being near or between 2 values in list */
for (; lp < ep; lp++) {
/*
* If value is close to the current value of the list
* then target is not between values, it is one of the values
*/
if (udiff(lp[0] * EEP_SCALE, target) < EEP_DELTA) {
*vlo = *vhi = lp[0];
return;
}
/*
* Look for value being between current value and next value
* if so return these 2 values
*/
if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
*vlo = lp[0];
*vhi = lp[1];
return;
}
}
HALASSERT(AH_FALSE); /* should not reach here */
}
/*
* Perform analog "swizzling" of parameters into their location
*
* NB: used by RF backends
*/
void
ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
uint32_t firstBit, uint32_t column)
{
#define MAX_ANALOG_START 319 /* XXX */
uint32_t tmp32, mask, arrayEntry, lastBit;
int32_t bitPosition, bitsLeft;
HALASSERT(column <= 3);
HALASSERT(numBits <= 32);
HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
tmp32 = ath_hal_reverseBits(reg32, numBits);
arrayEntry = (firstBit - 1) / 8;
bitPosition = (firstBit - 1) % 8;
bitsLeft = numBits;
while (bitsLeft > 0) {
lastBit = (bitPosition + bitsLeft > 8) ?
8 : bitPosition + bitsLeft;
mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
(column * 8);
rfBuf[arrayEntry] &= ~mask;
rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
(column * 8)) & mask;
bitsLeft -= 8 - bitPosition;
tmp32 = tmp32 >> (8 - bitPosition);
bitPosition = 0;
arrayEntry++;
}
#undef MAX_ANALOG_START
}
/*
* Sets the rate to duration values in MAC - used for multi-
* rate retry.
* The rate duration table needs to cover all valid rate codes;
* the 11g table covers all ofdm rates, while the 11b table
* covers all cck rates => all valid rates get covered between
* these two mode's ratetables!
* But if we're turbo, the ofdm phy is replaced by the turbo phy
* and cck is not valid with turbo => all rates get covered
* by the turbo ratetable only
*/
void
ar5212SetRateDurationTable(struct ath_hal *ah,
const struct ieee80211_channel *chan)
{
const HAL_RATE_TABLE *rt;
int i;
/* NB: band doesn't matter for 1/2 and 1/4 rate */
if (IEEE80211_IS_CHAN_HALF(chan)) {
rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
} else {
rt = ar5212GetRateTable(ah,
IEEE80211_IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
}
for (i = 0; i < rt->rateCount; ++i)
OS_REG_WRITE(ah,
AR_RATE_DURATION(rt->info[i].rateCode),
ath_hal_computetxtime(ah, rt,
WLAN_CTRL_FRAME_SIZE,
rt->info[i].controlRate, AH_FALSE, AH_TRUE));
if (!IEEE80211_IS_CHAN_TURBO(chan)) {
/* 11g Table is used to cover the CCK rates. */
rt = ar5212GetRateTable(ah, HAL_MODE_11G);
for (i = 0; i < rt->rateCount; ++i) {
uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
if (rt->info[i].phy != IEEE80211_T_CCK)
continue;
OS_REG_WRITE(ah, reg,
ath_hal_computetxtime(ah, rt,
WLAN_CTRL_FRAME_SIZE,
rt->info[i].controlRate, AH_FALSE,
AH_TRUE));
/* cck rates have short preamble option also */
if (rt->info[i].shortPreamble) {
reg += rt->info[i].shortPreamble << 2;
OS_REG_WRITE(ah, reg,
ath_hal_computetxtime(ah, rt,
WLAN_CTRL_FRAME_SIZE,
rt->info[i].controlRate,
AH_TRUE, AH_TRUE));
}
}
}
}
/* Adjust various register settings based on half/quarter rate clock setting.
* This includes: +USEC, TX/RX latency,
* + IFS params: slot, eifs, misc etc.
*/
void
ar5212SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
IEEE80211_IS_CHAN_QUARTER(chan));
refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
if (IEEE80211_IS_CHAN_HALF(chan)) {
slot = IFS_SLOT_HALF_RATE;
rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
usec = HALF_RATE_USEC;
eifs = IFS_EIFS_HALF_RATE;
init_usec = INIT_USEC >> 1;
} else { /* quarter rate */
slot = IFS_SLOT_QUARTER_RATE;
rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
usec = QUARTER_RATE_USEC;
eifs = IFS_EIFS_QUARTER_RATE;
init_usec = INIT_USEC >> 2;
}
OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
}
↑ V610 Undefined behavior. Check the shift operator '<<'. The left operand is negative ('(qCoff)' = [-16..15]).
↑ V629 Consider inspecting the '1 << (24 - coef_exp - 1)' expression. Bit shifting of the 32-bit value with a subsequent expansion to the 64-bit type.
↑ V610 Undefined behavior. Check the shift operator '<<'. The left operand is negative ('(iCoff)' = [-32..31]).