/*
* Copyright 2008-2015 Haiku, Inc. All rights reserved.
* Copyright 2007-2009, Marcus Overhagen. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Axel Dörfler, axeld@pinc-software.de
* Michael Lotz, mmlr@mlotz.ch
* Alexander von Gluck IV, kallisti5@unixzen.com
*/
#include "ahci_port.h"
#include <new>
#include <stdio.h>
#include <string.h>
#include <ByteOrder.h>
#include <KernelExport.h>
#include <ATACommands.h>
#include <ATAInfoBlock.h>
#include <AutoDeleter.h>
#include "ahci_controller.h"
#include "ahci_tracing.h"
#include "sata_request.h"
#include "scsi_cmds.h"
#include "util.h"
//#define TRACE_AHCI
#ifdef TRACE_AHCI
# define TRACE(a...) dprintf("ahci: " a)
#else
# define TRACE(a...)
#endif
#define ERROR(a...) dprintf("ahci: " a)
//#define FLOW(a...) dprintf("ahci: " a)
//#define RWTRACE(a...) dprintf("ahci: " a)
#define FLOW(a...)
#define RWTRACE(a...)
#define INQUIRY_BASE_LENGTH 36
AHCIPort::AHCIPort(AHCIController* controller, int index)
:
fController(controller),
fIndex(index),
fRegs(&controller->fRegs->port[index]),
fArea(-1),
fCommandsActive(0),
fRequestSem(-1),
fResponseSem(-1),
fDevicePresent(false),
fUse48BitCommands(false),
fSectorSize(0),
fSectorCount(0),
fIsATAPI(false),
fTestUnitReadyActive(false),
fPortReset(false),
fError(false),
fTrimSupported(false)
{
B_INITIALIZE_SPINLOCK(&fSpinlock);
fRequestSem = create_sem(1, "ahci request");
fResponseSem = create_sem(0, "ahci response");
}
AHCIPort::~AHCIPort()
{
delete_sem(fRequestSem);
delete_sem(fResponseSem);
}
status_t
AHCIPort::Init1()
{
TRACE("AHCIPort::Init1 port %d\n", fIndex);
size_t size = sizeof(command_list_entry) * COMMAND_LIST_ENTRY_COUNT
+ sizeof(fis) + sizeof(command_table)
+ sizeof(prd) * PRD_TABLE_ENTRY_COUNT;
char* virtAddr;
phys_addr_t physAddr;
char name[32];
snprintf(name, sizeof(name), "AHCI port %d", fIndex);
fArea = alloc_mem((void**)&virtAddr, &physAddr, size, 0, name);
if (fArea < B_OK) {
TRACE("failed allocating memory for port %d\n", fIndex);
return fArea;
}
memset(virtAddr, 0, size);
fCommandList = (command_list_entry*)virtAddr;
virtAddr += sizeof(command_list_entry) * COMMAND_LIST_ENTRY_COUNT;
fFIS = (fis*)virtAddr;
virtAddr += sizeof(fis);
fCommandTable = (command_table*)virtAddr;
virtAddr += sizeof(command_table);
fPRDTable = (prd*)virtAddr;
TRACE("PRD table is at %p\n", fPRDTable);
fRegs->clb = LO32(physAddr);
fRegs->clbu = HI32(physAddr);
physAddr += sizeof(command_list_entry) * COMMAND_LIST_ENTRY_COUNT;
fRegs->fb = LO32(physAddr);
fRegs->fbu = HI32(physAddr);
physAddr += sizeof(fis);
fCommandList[0].ctba = LO32(physAddr);
fCommandList[0].ctbau = HI32(physAddr);
// prdt follows after command table
// disable transitions to partial or slumber state
fRegs->sctl |= (SCTL_PORT_IPM_NOPART | SCTL_PORT_IPM_NOSLUM);
// clear IRQ status bits
fRegs->is = fRegs->is;
// clear error bits
_ClearErrorRegister();
// power up device
fRegs->cmd |= PORT_CMD_POD;
// spin up device
fRegs->cmd |= PORT_CMD_SUD;
// activate link
fRegs->cmd = (fRegs->cmd & ~PORT_CMD_ICC_MASK) | PORT_CMD_ICC_ACTIVE;
// enable FIS receive (enabled when fb set, only to be disabled when unset)
fRegs->cmd |= PORT_CMD_FRE;
FlushPostedWrites();
return B_OK;
}
// called with global interrupts enabled
status_t
AHCIPort::Init2()
{
TRACE("AHCIPort::Init2 port %d\n", fIndex);
// enable port
Enable();
// enable interrupts
fRegs->ie = PORT_INT_MASK;
FlushPostedWrites();
// reset port and probe info
ResetDevice();
DumpHBAState();
TRACE("%s: port %d, device %s\n", __func__, fIndex,
fDevicePresent ? "present" : "absent");
return B_OK;
}
void
AHCIPort::Uninit()
{
TRACE("AHCIPort::Uninit port %d\n", fIndex);
// Spec v1.3.1, §10.3.2 - Shut down port before unsetting FRE
// shutdown the port
if (!Disable()) {
ERROR("%s: port %d error, unable to shutdown before FRE clear!\n",
__func__, fIndex);
return;
}
// Clear FRE and wait for completion
fRegs->cmd &= ~PORT_CMD_FRE;
if (wait_until_clear(&fRegs->cmd, PORT_CMD_FR, 500000) < B_OK)
ERROR("%s: port %d error FIS rx still running\n", __func__, fIndex);
// disable interrupts
fRegs->ie = 0;
// clear pending interrupts
fRegs->is = fRegs->is;
// invalidate DMA addresses
fRegs->clb = 0;
fRegs->clbu = 0;
fRegs->fb = 0;
fRegs->fbu = 0;
delete_area(fArea);
}
void
AHCIPort::ResetDevice()
{
// perform a hard reset
if (PortReset() != B_OK) {
ERROR("%s: port %d unable to hard reset device\n", __func__, fIndex);
return;
}
if (wait_until_set(&fRegs->ssts, SSTS_PORT_DET_NODEV, 100000) < B_OK)
TRACE("AHCIPort::ResetDevice port %d no device detected\n", fIndex);
_ClearErrorRegister();
if (fRegs->ssts & SSTS_PORT_DET_NOPHY) {
if (wait_until_set(&fRegs->ssts, 0x3, 500000) < B_OK) {
TRACE("AHCIPort::ResetDevice port %d device present but no phy "
"communication\n", fIndex);
}
}
_ClearErrorRegister();
}
status_t
AHCIPort::PortReset()
{
TRACE("AHCIPort::PortReset port %d\n", fIndex);
if (!Disable()) {
ERROR("%s: port %d unable to shutdown!\n", __func__, fIndex);
return B_ERROR;
}
_ClearErrorRegister();
// Wait for BSY and DRQ to clear (idle port)
if (wait_until_clear(&fRegs->tfd, ATA_STATUS_BUSY | ATA_STATUS_DATA_REQUEST,
1000000) < B_OK) {
// If we can't clear busy, do a full comreset
// Spec v1.3.1, §10.4.2 Port Reset
// Physical comm between HBA and port disabled. More Intrusive
ERROR("%s: port %d undergoing COMRESET\n", __func__, fIndex);
// Notice we're throwing out all other control flags.
fRegs->sctl = (SSTS_PORT_IPM_ACTIVE | SSTS_PORT_IPM_PARTIAL
| SCTL_PORT_DET_INIT);
FlushPostedWrites();
spin(1100);
// You must wait 1ms at minimum
fRegs->sctl = (fRegs->sctl & ~HBA_PORT_DET_MASK) | SCTL_PORT_DET_NOINIT;
FlushPostedWrites();
}
Enable();
if (wait_until_set(&fRegs->ssts, SSTS_PORT_DET_PRESENT, 500000) < B_OK) {
TRACE("%s: port %d: no device detected\n", __func__, fIndex);
fDevicePresent = false;
return B_OK;
}
return Probe();
}
status_t
AHCIPort::Probe()
{
if ((fRegs->tfd & 0xff) == 0xff)
snooze(200000);
if ((fRegs->tfd & 0xff) == 0xff) {
TRACE("%s: port %d: invalid task file status 0xff\n", __func__,
fIndex);
return B_ERROR;
}
if (!fTestUnitReadyActive) {
switch (fRegs->ssts & HBA_PORT_SPD_MASK) {
case 0x10:
ERROR("%s: port %d link speed 1.5Gb/s\n", __func__, fIndex);
break;
case 0x20:
ERROR("%s: port %d link speed 3.0Gb/s\n", __func__, fIndex);
break;
case 0x30:
ERROR("%s: port %d link speed 6.0Gb/s\n", __func__, fIndex);
break;
default:
ERROR("%s: port %d link speed unrestricted\n", __func__, fIndex);
break;
}
}
wait_until_clear(&fRegs->tfd, ATA_STATUS_BUSY, 31000000);
fDevicePresent = (fRegs->ssts & HBA_PORT_DET_MASK) == SSTS_PORT_DET_PRESENT;
fIsATAPI = fRegs->sig == SATA_SIG_ATAPI;
if (fIsATAPI)
fRegs->cmd |= PORT_CMD_ATAPI;
else
fRegs->cmd &= ~PORT_CMD_ATAPI;
FlushPostedWrites();
TRACE("device signature 0x%08" B_PRIx32 " (%s)\n", fRegs->sig,
fRegs->sig == SATA_SIG_ATAPI ? "ATAPI" : fRegs->sig == SATA_SIG_ATA
? "ATA" : "unknown");
return B_OK;
}
void
AHCIPort::DumpD2HFis()
{
TRACE("D2H FIS:\n");
TRACE(" DW0 %02x %02x %02x %02x\n", fFIS->rfis[3], fFIS->rfis[2],
fFIS->rfis[1], fFIS->rfis[0]);
TRACE(" DW1 %02x %02x %02x %02x\n", fFIS->rfis[7], fFIS->rfis[6],
fFIS->rfis[5], fFIS->rfis[4]);
TRACE(" DW2 %02x %02x %02x %02x\n", fFIS->rfis[11], fFIS->rfis[10],
fFIS->rfis[9], fFIS->rfis[8]);
TRACE(" DW3 %02x %02x %02x %02x\n", fFIS->rfis[15], fFIS->rfis[14],
fFIS->rfis[13], fFIS->rfis[12]);
TRACE(" DW4 %02x %02x %02x %02x\n", fFIS->rfis[19], fFIS->rfis[18],
fFIS->rfis[17], fFIS->rfis[16]);
}
void
AHCIPort::DumpHBAState()
{
TRACE("Port %d state:\n", fIndex);
TRACE(" ie 0x%08" B_PRIx32 "\n", fRegs->ie);
TRACE(" is 0x%08" B_PRIx32 "\n", fRegs->is);
TRACE(" cmd 0x%08" B_PRIx32 "\n", fRegs->cmd);
TRACE(" ssts 0x%08" B_PRIx32 "\n", fRegs->ssts);
TRACE(" sctl 0x%08" B_PRIx32 "\n", fRegs->sctl);
TRACE(" serr 0x%08" B_PRIx32 "\n", fRegs->serr);
TRACE(" sact 0x%08" B_PRIx32 "\n", fRegs->sact);
TRACE(" tfd 0x%08" B_PRIx32 "\n", fRegs->tfd);
}
void
AHCIPort::Interrupt()
{
uint32 is = fRegs->is;
fRegs->is = is; // clear interrupts
if (is & PORT_INT_ERROR) {
InterruptErrorHandler(is);
return;
}
uint32 ci = fRegs->ci;
RWTRACE("[%lld] %ld AHCIPort::Interrupt port %d, fCommandsActive 0x%08"
B_PRIx32 ", is 0x%08" B_PRIx32 ", ci 0x%08" B_PRIx32 "\n",
system_time(), find_thread(NULL), fIndex, fCommandsActive, is, ci);
acquire_spinlock(&fSpinlock);
if ((fCommandsActive & 1) && !(ci & 1)) {
fCommandsActive &= ~1;
release_sem_etc(fResponseSem, 1, B_DO_NOT_RESCHEDULE);
}
release_spinlock(&fSpinlock);
}
void
AHCIPort::InterruptErrorHandler(uint32 is)
{
TRACE("AHCIPort::InterruptErrorHandler port %d, fCommandsActive 0x%08"
B_PRIx32 ", is 0x%08" B_PRIx32 ", ci 0x%08" B_PRIx32 "\n", fIndex,
fCommandsActive, is, fRegs->ci);
TRACE("ssts 0x%08" B_PRIx32 "\n", fRegs->ssts);
TRACE("sctl 0x%08" B_PRIx32 "\n", fRegs->sctl);
TRACE("serr 0x%08" B_PRIx32 "\n", fRegs->serr);
TRACE("sact 0x%08" B_PRIx32 "\n", fRegs->sact);
// read and clear SError
_ClearErrorRegister();
if (is & PORT_INT_TFE) {
TRACE("Task File Error\n");
fPortReset = true;
fError = true;
}
if (is & PORT_INT_HBF) {
ERROR("Host Bus Fatal Error\n");
fPortReset = true;
fError = true;
}
if (is & PORT_INT_HBD) {
ERROR("Host Bus Data Error\n");
fPortReset = true;
fError = true;
}
if (is & PORT_INT_IF) {
ERROR("Interface Fatal Error\n");
fPortReset = true;
fError = true;
}
if (is & PORT_INT_INF) {
TRACE("Interface Non Fatal Error\n");
}
if (is & PORT_INT_OF) {
TRACE("Overflow\n");
fPortReset = true;
fError = true;
}
if (is & PORT_INT_IPM) {
TRACE("Incorrect Port Multiplier Status\n");
}
if (is & PORT_INT_PRC) {
TRACE("PhyReady Change\n");
//fPortReset = true;
}
if (is & PORT_INT_PC) {
TRACE("Port Connect Change\n");
// Unsolicited when we had a port connect change without us requesting
// Spec v1.3, §6.2.2.3 Recovery of Unsolicited COMINIT
// XXX: This shouldn't be needed here... but we can loop without it
//_ClearErrorRegister();
}
if (is & PORT_INT_UF) {
TRACE("Unknown FIS\n");
fPortReset = true;
}
if (fError) {
acquire_spinlock(&fSpinlock);
if ((fCommandsActive & 1)) {
fCommandsActive &= ~1;
release_sem_etc(fResponseSem, 1, B_DO_NOT_RESCHEDULE);
}
release_spinlock(&fSpinlock);
}
}
status_t
AHCIPort::FillPrdTable(volatile prd* prdTable, int* prdCount, int prdMax,
const void* data, size_t dataSize)
{
int maxEntries = prdMax + 1;
physical_entry entries[maxEntries];
uint32 entriesUsed = maxEntries;
status_t status = get_memory_map_etc(B_CURRENT_TEAM, data, dataSize,
entries, &entriesUsed);
if (status != B_OK) {
ERROR("%s: get_memory_map() failed: %s\n", __func__, strerror(status));
return B_ERROR;
}
return FillPrdTable(prdTable, prdCount, prdMax, entries, entriesUsed,
dataSize);
}
status_t
AHCIPort::FillPrdTable(volatile prd* prdTable, int* prdCount, int prdMax,
const physical_entry* sgTable, int sgCount, size_t dataSize)
{
*prdCount = 0;
while (sgCount > 0 && dataSize > 0) {
size_t size = min_c(sgTable->size, dataSize);
phys_addr_t address = sgTable->address;
T_PORT(AHCIPortPrdTable(fController, fIndex, address, size));
FLOW("FillPrdTable: sg-entry addr %#" B_PRIxPHYSADDR ", size %lu\n",
address, size);
if (address & 1) {
ERROR("AHCIPort::FillPrdTable: data alignment error\n");
return B_ERROR;
}
dataSize -= size;
while (size > 0) {
size_t bytes = min_c(size, PRD_MAX_DATA_LENGTH);
if (*prdCount == prdMax) {
ERROR("AHCIPort::FillPrdTable: prd table exhausted\n");
return B_ERROR;
}
FLOW("FillPrdTable: prd-entry %u, addr %p, size %lu\n",
*prdCount, address, bytes);
prdTable->dba = LO32(address);
prdTable->dbau = HI32(address);
prdTable->res = 0;
prdTable->dbc = bytes - 1;
*prdCount += 1;
prdTable++;
address = address + bytes;
size -= bytes;
}
sgTable++;
sgCount--;
}
if (*prdCount == 0) {
ERROR("%s: count is 0\n", __func__);
return B_ERROR;
}
if (dataSize > 0) {
ERROR("AHCIPort::FillPrdTable: sg table %ld bytes too small\n",
dataSize);
return B_ERROR;
}
return B_OK;
}
void
AHCIPort::StartTransfer()
{
acquire_sem(fRequestSem);
}
status_t
AHCIPort::WaitForTransfer(int* tfd, bigtime_t timeout)
{
status_t result = acquire_sem_etc(fResponseSem, 1, B_RELATIVE_TIMEOUT,
timeout);
if (result < B_OK) {
cpu_status cpu = disable_interrupts();
acquire_spinlock(&fSpinlock);
fCommandsActive &= ~1;
release_spinlock(&fSpinlock);
restore_interrupts(cpu);
result = B_TIMED_OUT;
} else if (fError) {
*tfd = fRegs->tfd;
result = B_ERROR;
fError = false;
} else {
*tfd = fRegs->tfd;
}
return result;
}
void
AHCIPort::FinishTransfer()
{
release_sem(fRequestSem);
}
void
AHCIPort::ScsiTestUnitReady(scsi_ccb* request)
{
TRACE("AHCIPort::ScsiTestUnitReady port %d\n", fIndex);
request->subsys_status = SCSI_REQ_CMP;
gSCSI->finished(request, 1);
}
void
AHCIPort::ScsiVPDInquiry(scsi_ccb* request, ata_device_infoblock* ataData)
{
TRACE("AHCIPort::ScsiVPDInquiry port %d\n", fIndex);
const scsi_cmd_inquiry* cmd = (const scsi_cmd_inquiry*)request->cdb;
size_t vpdDataLength = 0;
status_t transactionResult = B_ERROR;
switch (cmd->page_code) {
case SCSI_PAGE_SUPPORTED_VPD:
{
scsi_page_list vpdPageData;
vpdDataLength = sizeof(vpdPageData);
vpdPageData.page_code = cmd->page_code;
// Our supported pages
vpdPageData.page_length = 1;
vpdPageData.pages[0] = SCSI_PAGE_BLOCK_LIMITS;
transactionResult = sg_memcpy(request->sg_list, request->sg_count,
&vpdPageData, vpdDataLength);
break;
}
case SCSI_PAGE_BLOCK_LIMITS:
{
scsi_page_block_limits vpdPageData;
vpdDataLength = sizeof(vpdPageData);
vpdPageData.page_code = cmd->page_code;
vpdPageData.max_unmap_lba_count
= ataData->max_data_set_management_lba_range_blocks;
transactionResult = sg_memcpy(request->sg_list, request->sg_count,
&vpdPageData, vpdDataLength);
break;
}
case SCSI_PAGE_USN:
case SCSI_PAGE_BLOCK_DEVICE_CHARS:
case SCSI_PAGE_LB_PROVISIONING:
case SCSI_PAGE_REFERRALS:
ERROR("VPD AHCI page %d not yet implemented!\n",
cmd->page_code);
//request->subsys_status = SCSI_REQ_CMP;
request->subsys_status = SCSI_REQ_ABORTED;
return;
default:
ERROR("unknown VPD page code!\n");
request->subsys_status = SCSI_REQ_ABORTED;
return;
}
if (transactionResult < B_OK) {
request->subsys_status = SCSI_DATA_RUN_ERR;
} else {
request->subsys_status = SCSI_REQ_CMP;
request->data_resid = request->data_length
- vpdDataLength;
}
}
void
AHCIPort::ScsiInquiry(scsi_ccb* request)
{
TRACE("AHCIPort::ScsiInquiry port %d\n", fIndex);
const scsi_cmd_inquiry* cmd = (const scsi_cmd_inquiry*)request->cdb;
scsi_res_inquiry scsiData;
ata_device_infoblock ataData;
ASSERT(sizeof(ataData) == 512);
if (cmd->evpd) {
TRACE("VPD inquiry page 0x%X\n", cmd->page_code);
if (!request->data || request->data_length == 0) {
ERROR("invalid VPD request\n");
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
return;
}
} else if (cmd->page_code) {
// page_code without evpd is invalid per SCSI spec
ERROR("page code 0x%X on non-VPD request\n", cmd->page_code);
request->subsys_status = SCSI_REQ_ABORTED;
request->device_status = SCSI_STATUS_CHECK_CONDITION;
// TODO: Sense ILLEGAL REQUEST + INVALID FIELD IN CDB?
gSCSI->finished(request, 1);
return;
} else if (request->data_length < INQUIRY_BASE_LENGTH) {
ERROR("invalid request %" B_PRIu32 "\n", request->data_length);
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
return;
}
sata_request sreq;
sreq.SetData(&ataData, sizeof(ataData));
sreq.SetATACommand(fIsATAPI
? ATA_COMMAND_IDENTIFY_PACKET_DEVICE : ATA_COMMAND_IDENTIFY_DEVICE);
ExecuteSataRequest(&sreq);
sreq.WaitForCompletion();
if ((sreq.CompletionStatus() & ATA_STATUS_ERROR) != 0) {
ERROR("identify device failed\n");
request->subsys_status = SCSI_REQ_CMP_ERR;
gSCSI->finished(request, 1);
return;
}
if (cmd->evpd) {
// Simulate SCSI VPD data.
ScsiVPDInquiry(request, &ataData);
gSCSI->finished(request, 1);
return;
}
/*
uint8* data = (uint8*)&ataData;
for (int i = 0; i < 512; i += 8) {
TRACE(" %02x %02x %02x %02x %02x %02x %02x %02x\n", data[i], data[i+1],
data[i+2], data[i+3], data[i+4], data[i+5], data[i+6], data[i+7]);
}
*/
scsiData.device_type = fIsATAPI
? ataData.word_0.atapi.command_packet_set : scsi_dev_direct_access;
scsiData.device_qualifier = scsi_periph_qual_connected;
scsiData.device_type_modifier = 0;
scsiData.removable_medium = ataData.word_0.ata.removable_media_device;
scsiData.ansi_version = 2;
scsiData.ecma_version = 0;
scsiData.iso_version = 0;
scsiData.response_data_format = 2;
scsiData.term_iop = false;
scsiData.additional_length = sizeof(scsi_res_inquiry) - 4;
scsiData.soft_reset = false;
scsiData.cmd_queue = false;
scsiData.linked = false;
scsiData.sync = false;
scsiData.write_bus16 = true;
scsiData.write_bus32 = false;
scsiData.relative_address = false;
if (!fIsATAPI) {
fSectorCount = ataData.SectorCount(fUse48BitCommands, true);
fSectorSize = ataData.SectorSize();
fTrimSupported = ataData.data_set_management_support;
fMaxTrimRangeBlocks = B_LENDIAN_TO_HOST_INT16(
ataData.max_data_set_management_lba_range_blocks);
TRACE("lba %d, lba48 %d, fUse48BitCommands %d, sectors %" B_PRIu32
", sectors48 %" B_PRIu64 ", size %" B_PRIu64 "\n",
ataData.dma_supported != 0, ataData.lba48_supported != 0,
fUse48BitCommands, ataData.lba_sector_count,
ataData.lba48_sector_count, fSectorCount * fSectorSize);
if (fTrimSupported) {
if (fMaxTrimRangeBlocks == 0)
fMaxTrimRangeBlocks = 1;
#ifdef TRACE_AHCI
bool deterministic = ataData.supports_deterministic_read_after_trim;
TRACE("trim supported, %" B_PRIu32 " ranges blocks, reads are "
"%sdeterministic%s.\n", fMaxTrimRangeBlocks,
deterministic ? "" : "non-", deterministic
? (ataData.supports_read_zero_after_trim
? ", zero" : ", random") : "");
#endif
}
}
#if 0
if (fSectorCount < 0x0fffffff) {
TRACE("disabling 48 bit commands\n");
fUse48BitCommands = 0;
}
#endif
char modelNumber[sizeof(ataData.model_number) + 1];
char serialNumber[sizeof(ataData.serial_number) + 1];
char firmwareRev[sizeof(ataData.firmware_revision) + 1];
strlcpy(modelNumber, ataData.model_number, sizeof(modelNumber));
strlcpy(serialNumber, ataData.serial_number, sizeof(serialNumber));
strlcpy(firmwareRev, ataData.firmware_revision, sizeof(firmwareRev));
swap_words(modelNumber, sizeof(modelNumber) - 1);
swap_words(serialNumber, sizeof(serialNumber) - 1);
swap_words(firmwareRev, sizeof(firmwareRev) - 1);
TRACE("model number: %s\n", modelNumber);
TRACE("serial number: %s\n", serialNumber);
TRACE("firmware rev.: %s\n", firmwareRev);
// There's not enough space to fit all of the data in. ATA has 40 bytes for
// the model number, 20 for the serial number and another 8 for the
// firmware revision. SCSI has room for 8 for vendor ident, 16 for product
// ident and another 4 for product revision.
size_t vendorLen = strcspn(modelNumber, " ");
if (vendorLen >= sizeof(scsiData.vendor_ident))
vendorLen = strcspn(modelNumber, "-");
if (vendorLen < sizeof(scsiData.vendor_ident)) {
// First we try to break things apart smartly.
snprintf(scsiData.vendor_ident, vendorLen + 1, "%s", modelNumber);
size_t modelRemain = (sizeof(modelNumber) - vendorLen);
if (modelRemain > sizeof(scsiData.product_ident))
modelRemain = sizeof(scsiData.product_ident);
memcpy(scsiData.product_ident, modelNumber + (vendorLen + 1),
modelRemain);
} else {
// If we're unable to smartly break apart the vendor and model, just
// dumbly squeeze as much in as possible.
memcpy(scsiData.vendor_ident, modelNumber, sizeof(scsiData.vendor_ident));
memcpy(scsiData.product_ident, modelNumber + 8,
sizeof(scsiData.product_ident));
}
// Take the last 4 digits of the serial number as product rev
size_t serialLen = sizeof(scsiData.product_rev);
size_t serialOff = sizeof(serialNumber) - serialLen;
memcpy(scsiData.product_rev, serialNumber + serialOff, serialLen);
if (sg_memcpy(request->sg_list, request->sg_count, &scsiData,
sizeof(scsiData)) < B_OK) {
request->subsys_status = SCSI_DATA_RUN_ERR;
} else {
request->subsys_status = SCSI_REQ_CMP;
request->data_resid = request->data_length - sizeof(scsiData);
}
gSCSI->finished(request, 1);
}
void
AHCIPort::ScsiSynchronizeCache(scsi_ccb* request)
{
//TRACE("AHCIPort::ScsiSynchronizeCache port %d\n", fIndex);
sata_request* sreq = new(std::nothrow) sata_request(request);
if (sreq == NULL) {
ERROR("out of memory when allocating sync request\n");
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
return;
}
sreq->SetATACommand(fUse48BitCommands
? ATA_COMMAND_FLUSH_CACHE_EXT : ATA_COMMAND_FLUSH_CACHE);
ExecuteSataRequest(sreq);
}
void
AHCIPort::ScsiReadCapacity(scsi_ccb* request)
{
TRACE("AHCIPort::ScsiReadCapacity port %d\n", fIndex);
const scsi_cmd_read_capacity* cmd
= (const scsi_cmd_read_capacity*)request->cdb;
scsi_res_read_capacity scsiData;
if (cmd->pmi || cmd->lba || request->data_length < sizeof(scsiData)) {
TRACE("invalid request\n");
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
return;
}
TRACE("SectorSize %" B_PRIu32 ", SectorCount 0x%" B_PRIx64 "\n",
fSectorSize, fSectorCount);
scsiData.block_size = B_HOST_TO_BENDIAN_INT32(fSectorSize);
if (fSectorCount <= 0xffffffff)
scsiData.lba = B_HOST_TO_BENDIAN_INT32(fSectorCount - 1);
else
scsiData.lba = 0xffffffff;
if (sg_memcpy(request->sg_list, request->sg_count, &scsiData,
sizeof(scsiData)) < B_OK) {
request->subsys_status = SCSI_DATA_RUN_ERR;
} else {
request->subsys_status = SCSI_REQ_CMP;
request->data_resid = request->data_length - sizeof(scsiData);
}
gSCSI->finished(request, 1);
}
void
AHCIPort::ScsiReadCapacity16(scsi_ccb* request)
{
TRACE("AHCIPort::ScsiReadCapacity16 port %d\n", fIndex);
scsi_res_read_capacity_long scsiData;
TRACE("SectorSize %" B_PRIu32 ", SectorCount 0x%" B_PRIx64 "\n",
fSectorSize, fSectorCount);
scsiData.block_size = B_HOST_TO_BENDIAN_INT32(fSectorSize);
scsiData.lba = B_HOST_TO_BENDIAN_INT64(fSectorCount - 1);
if (sg_memcpy(request->sg_list, request->sg_count, &scsiData,
sizeof(scsiData)) < B_OK) {
request->subsys_status = SCSI_DATA_RUN_ERR;
} else {
request->subsys_status = SCSI_REQ_CMP;
request->data_resid = request->data_length - sizeof(scsiData);
}
gSCSI->finished(request, 1);
}
void
AHCIPort::ScsiReadWrite(scsi_ccb* request, uint64 lba, size_t sectorCount,
bool isWrite)
{
RWTRACE("[%lld] %ld ScsiReadWrite: position %llu, size %lu, isWrite %d\n",
system_time(), find_thread(NULL), lba * 512, sectorCount * 512,
isWrite);
#if 0
if (isWrite) {
TRACE("write request ignored\n");
request->subsys_status = SCSI_REQ_CMP;
request->data_resid = 0;
gSCSI->finished(request, 1);
return;
}
#endif
ASSERT(request->data_length == sectorCount * 512);
sata_request* sreq = new(std::nothrow) sata_request(request);
if (sreq == NULL) {
TRACE("out of memory when allocating read/write request\n");
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
return;
}
if (fUse48BitCommands) {
if (sectorCount > 65536) {
panic("ahci: ScsiReadWrite length too large, %lu sectors",
sectorCount);
}
if (lba > MAX_SECTOR_LBA_48)
panic("achi: ScsiReadWrite position too large for 48-bit LBA\n");
sreq->SetATA48Command(
isWrite ? ATA_COMMAND_WRITE_DMA_EXT : ATA_COMMAND_READ_DMA_EXT,
lba, sectorCount);
} else {
if (sectorCount > 256) {
panic("ahci: ScsiReadWrite length too large, %lu sectors",
sectorCount);
}
if (lba > MAX_SECTOR_LBA_28)
panic("achi: ScsiReadWrite position too large for normal LBA\n");
sreq->SetATA28Command(isWrite
? ATA_COMMAND_WRITE_DMA : ATA_COMMAND_READ_DMA, lba, sectorCount);
}
ExecuteSataRequest(sreq, isWrite);
}
void
AHCIPort::ScsiUnmap(scsi_ccb* request, scsi_unmap_parameter_list* unmapBlocks)
{
// Determine how many blocks are supposed to be trimmed in total
uint32 scsiRangeCount = B_BENDIAN_TO_HOST_INT16(
unmapBlocks->block_data_length) / sizeof(scsi_unmap_block_descriptor);
dprintf("TRIM SCSI:\n");
for (uint32 i = 0; i < scsiRangeCount; i++) {
dprintf("[%3" B_PRIu32 "] %" B_PRIu64 " : %" B_PRIu32 "\n", i,
(uint64)B_BENDIAN_TO_HOST_INT64(unmapBlocks->blocks[i].lba),
(uint32)B_BENDIAN_TO_HOST_INT32(unmapBlocks->blocks[i].block_count));
}
uint32 scsiIndex = 0;
uint32 scsiLastBlocks = 0;
uint32 maxLBARangeCount = fMaxTrimRangeBlocks * 512 / 8;
// 512 bytes per range block, 8 bytes per range
// Split the SCSI ranges into ATA ranges as large as allowed.
// We assume that the SCSI unmap ranges cannot be merged together
while (scsiIndex < scsiRangeCount) {
// Determine how many LBA ranges we need for the next chunk
uint32 lbaRangeCount = 0;
for (uint32 i = scsiIndex; i < scsiRangeCount; i++) {
uint32 scsiBlocks = B_BENDIAN_TO_HOST_INT32(
unmapBlocks->blocks[i].block_count);
if (scsiBlocks == 0)
break;
if (i == scsiIndex)
scsiBlocks -= scsiLastBlocks;
lbaRangeCount += (scsiBlocks + 65534) / 65535;
if (lbaRangeCount >= maxLBARangeCount) {
lbaRangeCount = maxLBARangeCount;
break;
}
}
if (lbaRangeCount == 0)
break;
uint32 lbaRangesSize = lbaRangeCount * sizeof(uint64);
uint64* lbaRanges = (uint64*)malloc(lbaRangesSize);
if (lbaRanges == NULL) {
ERROR("out of memory when allocating %" B_PRIu32 " unmap ranges\n",
lbaRangeCount);
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
return;
}
MemoryDeleter deleter(lbaRanges);
for (uint32 lbaIndex = 0;
scsiIndex < scsiRangeCount && lbaIndex < lbaRangeCount;) {
uint64 scsiOffset = B_BENDIAN_TO_HOST_INT64(
unmapBlocks->blocks[scsiIndex].lba) + scsiLastBlocks;
uint32 scsiBlocksLeft = B_BENDIAN_TO_HOST_INT32(
unmapBlocks->blocks[scsiIndex].block_count) - scsiLastBlocks;
if (scsiBlocksLeft == 0) {
// Ignore the rest of the ranges (they are empty)
scsiIndex = scsiRangeCount;
break;
}
while (scsiBlocksLeft > 0 && lbaIndex < lbaRangeCount) {
uint16 blocks = scsiBlocksLeft > 65535
? 65535 : (uint16)scsiBlocksLeft;
lbaRanges[lbaIndex++] = B_HOST_TO_LENDIAN_INT64(
((uint64)blocks << 48) | scsiOffset);
scsiOffset += blocks;
scsiLastBlocks += blocks;
scsiBlocksLeft -= blocks;
}
if (scsiBlocksLeft == 0) {
scsiLastBlocks = 0;
scsiIndex++;
}
}
dprintf("TRIM AHCI:\n");
for (uint32 i = 0; i < lbaRangeCount; i++) {
uint64 value = B_HOST_TO_LENDIAN_INT64(lbaRanges[i]);
dprintf("[%3" B_PRIu32 "] %" B_PRIu64 " : %" B_PRIu64 "\n", i,
value & (((uint64)1 << 48) - 1), value >> 48);
}
sata_request sreq;
sreq.SetATA48Command(ATA_COMMAND_DATA_SET_MANAGEMENT, 0,
(lbaRangesSize + 511) / 512);
sreq.SetFeature(1);
sreq.SetData(lbaRanges, lbaRangesSize);
ExecuteSataRequest(&sreq);
sreq.WaitForCompletion();
if ((sreq.CompletionStatus() & ATA_STATUS_ERROR) != 0) {
ERROR("trim failed (%" B_PRIu32 " ranges)!\n", lbaRangeCount);
request->subsys_status = SCSI_REQ_CMP_ERR;
} else
request->subsys_status = SCSI_REQ_CMP;
}
request->data_resid = 0;
request->device_status = SCSI_STATUS_GOOD;
gSCSI->finished(request, 1);
}
void
AHCIPort::ExecuteSataRequest(sata_request* request, bool isWrite)
{
FLOW("ExecuteAtaRequest port %d\n", fIndex);
StartTransfer();
int prdEntrys;
if (request->CCB() && request->CCB()->data_length) {
FillPrdTable(fPRDTable, &prdEntrys, PRD_TABLE_ENTRY_COUNT,
request->CCB()->sg_list, request->CCB()->sg_count,
request->CCB()->data_length);
} else if (request->Data() && request->Size()) {
FillPrdTable(fPRDTable, &prdEntrys, PRD_TABLE_ENTRY_COUNT,
request->Data(), request->Size());
} else
prdEntrys = 0;
FLOW("prdEntrys %d\n", prdEntrys);
fCommandList->prdtl_flags_cfl = 0;
fCommandList->cfl = 5; // 20 bytes, length in DWORDS
memcpy((char*)fCommandTable->cfis, request->FIS(), 20);
// We some hide messages when the test unit ready active is clear
// as empty removeable media resets constantly.
fTestUnitReadyActive = request->IsTestUnitReady();
if (request->IsATAPI()) {
// ATAPI PACKET is a 12 or 16 byte SCSI command
memset((char*)fCommandTable->acmd, 0, 32);
memcpy((char*)fCommandTable->acmd, request->CCB()->cdb,
request->CCB()->cdb_length);
fCommandList->a = 1;
}
if (isWrite)
fCommandList->w = 1;
fCommandList->prdtl = prdEntrys;
fCommandList->prdbc = 0;
if (wait_until_clear(&fRegs->tfd, ATA_STATUS_BUSY | ATA_STATUS_DATA_REQUEST,
1000000) < B_OK) {
ERROR("ExecuteAtaRequest port %d: device is busy\n", fIndex);
PortReset();
FinishTransfer();
request->Abort();
return;
}
cpu_status cpu = disable_interrupts();
acquire_spinlock(&fSpinlock);
fCommandsActive |= 1;
fRegs->ci = 1;
FlushPostedWrites();
release_spinlock(&fSpinlock);
restore_interrupts(cpu);
int tfd;
status_t status = WaitForTransfer(&tfd, 20000000);
FLOW("Port %d sata request flow:\n", fIndex);
FLOW(" tfd %#x\n", tfd);
FLOW(" prdbc %ld\n", fCommandList->prdbc);
FLOW(" ci 0x%08" B_PRIx32 "\n", fRegs->ci);
FLOW(" is 0x%08" B_PRIx32 "\n", fRegs->is);
FLOW(" serr 0x%08" B_PRIx32 "\n", fRegs->serr);
/*
TRACE("ci 0x%08" B_PRIx32 "\n", fRegs->ci);
TRACE("ie 0x%08" B_PRIx32 "\n", fRegs->ie);
TRACE("is 0x%08" B_PRIx32 "\n", fRegs->is);
TRACE("cmd 0x%08" B_PRIx32 "\n", fRegs->cmd);
TRACE("ssts 0x%08" B_PRIx32 "\n", fRegs->ssts);
TRACE("sctl 0x%08" B_PRIx32 "\n", fRegs->sctl);
TRACE("serr 0x%08" B_PRIx32 "\n", fRegs->serr);
TRACE("sact 0x%08" B_PRIx32 "\n", fRegs->sact);
TRACE("tfd 0x%08" B_PRIx32 "\n", fRegs->tfd);
*/
if (fPortReset || status == B_TIMED_OUT) {
fPortReset = false;
PortReset();
}
size_t bytesTransfered = fCommandList->prdbc;
FinishTransfer();
if (status == B_TIMED_OUT) {
ERROR("ExecuteAtaRequest port %d: device timeout\n", fIndex);
request->Abort();
return;
}
request->Finish(tfd, bytesTransfered);
}
void
AHCIPort::ScsiExecuteRequest(scsi_ccb* request)
{
// TRACE("AHCIPort::ScsiExecuteRequest port %d, opcode 0x%02x, length %u\n", fIndex, request->cdb[0], request->cdb_length);
if (fIsATAPI) {
bool isWrite = false;
switch (request->flags & SCSI_DIR_MASK) {
case SCSI_DIR_NONE:
ASSERT(request->data_length == 0);
break;
case SCSI_DIR_IN:
break;
case SCSI_DIR_OUT:
isWrite = true;
ASSERT(request->data_length > 0);
break;
default:
panic("CDB has invalid direction mask");
}
// TRACE("AHCIPort::ScsiExecuteRequest ATAPI: port %d, opcode 0x%02x, length %u\n", fIndex, request->cdb[0], request->cdb_length);
sata_request* sreq = new(std::nothrow) sata_request(request);
if (sreq == NULL) {
ERROR("out of memory when allocating atapi request\n");
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
return;
}
sreq->SetATAPICommand(request->data_length);
// uint8* data = (uint8*) sreq->ccb()->cdb;
// for (int i = 0; i < 16; i += 8) {
// TRACE(" %02x %02x %02x %02x %02x %02x %02x %02x\n", data[i], data[i+1], data[i+2], data[i+3], data[i+4], data[i+5], data[i+6], data[i+7]);
// }
ExecuteSataRequest(sreq, isWrite);
return;
}
if (request->cdb[0] == SCSI_OP_REQUEST_SENSE) {
panic("ahci: SCSI_OP_REQUEST_SENSE not yet supported\n");
return;
}
if (!fDevicePresent) {
TRACE("no device present on port %d\n", fIndex);
request->subsys_status = SCSI_DEV_NOT_THERE;
gSCSI->finished(request, 1);
return;
}
request->subsys_status = SCSI_REQ_CMP;
switch (request->cdb[0]) {
case SCSI_OP_TEST_UNIT_READY:
ScsiTestUnitReady(request);
break;
case SCSI_OP_INQUIRY:
ScsiInquiry(request);
break;
case SCSI_OP_READ_CAPACITY:
ScsiReadCapacity(request);
break;
case SCSI_OP_SERVICE_ACTION_IN:
if ((request->cdb[1] & 0x1f) == SCSI_SAI_READ_CAPACITY_16)
ScsiReadCapacity16(request);
else {
request->subsys_status = SCSI_REQ_INVALID;
gSCSI->finished(request, 1);
}
break;
case SCSI_OP_SYNCHRONIZE_CACHE:
ScsiSynchronizeCache(request);
break;
case SCSI_OP_READ_6:
case SCSI_OP_WRITE_6:
{
const scsi_cmd_rw_6* cmd = (const scsi_cmd_rw_6*)request->cdb;
uint32 position = ((uint32)cmd->high_lba << 16)
| ((uint32)cmd->mid_lba << 8) | (uint32)cmd->low_lba;
size_t length = cmd->length != 0 ? cmd->length : 256;
bool isWrite = request->cdb[0] == SCSI_OP_WRITE_6;
ScsiReadWrite(request, position, length, isWrite);
break;
}
case SCSI_OP_READ_10:
case SCSI_OP_WRITE_10:
{
const scsi_cmd_rw_10* cmd = (const scsi_cmd_rw_10*)request->cdb;
uint32 position = B_BENDIAN_TO_HOST_INT32(cmd->lba);
size_t length = B_BENDIAN_TO_HOST_INT16(cmd->length);
bool isWrite = request->cdb[0] == SCSI_OP_WRITE_10;
if (length) {
ScsiReadWrite(request, position, length, isWrite);
} else {
ERROR("AHCIPort::ScsiExecuteRequest error: transfer without "
"data!\n");
request->subsys_status = SCSI_REQ_INVALID;
gSCSI->finished(request, 1);
}
break;
}
case SCSI_OP_READ_12:
case SCSI_OP_WRITE_12:
{
const scsi_cmd_rw_12* cmd = (const scsi_cmd_rw_12*)request->cdb;
uint32 position = B_BENDIAN_TO_HOST_INT32(cmd->lba);
size_t length = B_BENDIAN_TO_HOST_INT32(cmd->length);
bool isWrite = request->cdb[0] == SCSI_OP_WRITE_12;
if (length) {
ScsiReadWrite(request, position, length, isWrite);
} else {
ERROR("AHCIPort::ScsiExecuteRequest error: transfer without "
"data!\n");
request->subsys_status = SCSI_REQ_INVALID;
gSCSI->finished(request, 1);
}
break;
}
case SCSI_OP_READ_16:
case SCSI_OP_WRITE_16:
{
const scsi_cmd_rw_16* cmd = (const scsi_cmd_rw_16*)request->cdb;
uint64 position = B_BENDIAN_TO_HOST_INT64(cmd->lba);
size_t length = B_BENDIAN_TO_HOST_INT32(cmd->length);
bool isWrite = request->cdb[0] == SCSI_OP_WRITE_16;
if (length) {
ScsiReadWrite(request, position, length, isWrite);
} else {
ERROR("AHCIPort::ScsiExecuteRequest error: transfer without "
"data!\n");
request->subsys_status = SCSI_REQ_INVALID;
gSCSI->finished(request, 1);
}
break;
}
case SCSI_OP_UNMAP:
{
const scsi_cmd_unmap* cmd = (const scsi_cmd_unmap*)request->cdb;
if (!fTrimSupported) {
ERROR("%s port %d: unsupported request opcode 0x%02x\n",
__func__, fIndex, request->cdb[0]);
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
break;
}
scsi_unmap_parameter_list* unmapBlocks
= (scsi_unmap_parameter_list*)request->data;
if (unmapBlocks == NULL
|| B_BENDIAN_TO_HOST_INT16(cmd->length) != request->data_length
|| B_BENDIAN_TO_HOST_INT16(unmapBlocks->data_length)
!= request->data_length - 1) {
ERROR("%s port %d: invalid unmap parameter data length\n",
__func__, fIndex);
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
} else {
ScsiUnmap(request, unmapBlocks);
}
break;
}
default:
ERROR("AHCIPort::ScsiExecuteRequest port %d unsupported request "
"opcode 0x%02x\n", fIndex, request->cdb[0]);
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
}
}
uchar
AHCIPort::ScsiAbortRequest(scsi_ccb* request)
{
return SCSI_REQ_CMP;
}
uchar
AHCIPort::ScsiTerminateRequest(scsi_ccb* request)
{
return SCSI_REQ_CMP;
}
uchar
AHCIPort::ScsiResetDevice()
{
return SCSI_REQ_CMP;
}
void
AHCIPort::ScsiGetRestrictions(bool* isATAPI, bool* noAutoSense,
uint32* maxBlocks)
{
*isATAPI = fIsATAPI;
*noAutoSense = fIsATAPI; // emulated auto sense for ATA, but not ATAPI
*maxBlocks = fUse48BitCommands ? 65536 : 256;
TRACE("AHCIPort::ScsiGetRestrictions port %d: isATAPI %d, noAutoSense %d, "
"maxBlocks %" B_PRIu32 "\n", fIndex, *isATAPI, *noAutoSense,
*maxBlocks);
}
bool
AHCIPort::Enable()
{
// Spec v1.3.1, §10.3.1 Start (PxCMD.ST)
TRACE("%s: port %d\n", __func__, fIndex);
if ((fRegs->cmd & PORT_CMD_ST) != 0) {
ERROR("%s: Starting port already running!\n", __func__);
return false;
}
if ((fRegs->cmd & PORT_CMD_FRE) == 0) {
ERROR("%s: Unable to start port without FRE enabled!\n", __func__);
return false;
}
// Clear DMA engine and wait for completion
if (wait_until_clear(&fRegs->cmd, PORT_CMD_CR, 500000) < B_OK) {
ERROR("%s: port %d error DMA engine still running\n", __func__,
fIndex);
return false;
}
// Start port
fRegs->cmd |= PORT_CMD_ST;
FlushPostedWrites();
return true;
}
bool
AHCIPort::Disable()
{
TRACE("%s: port %d\n", __func__, fIndex);
if ((fRegs->cmd & PORT_CMD_ST) == 0) {
// Port already disabled, carry on.
TRACE("%s: port %d attempting to disable stopped port.\n",
__func__, fIndex);
} else {
// Disable port
fRegs->cmd &= ~PORT_CMD_ST;
FlushPostedWrites();
}
// Spec v1.3.1, §10.4.2 Port Reset - assume hung after 500 mil.
// Clear DMA engine and wait for completion
if (wait_until_clear(&fRegs->cmd, PORT_CMD_CR, 500000) < B_OK) {
ERROR("%s: port %d error DMA engine still running\n", __func__,
fIndex);
return false;
}
return true;
}
void
AHCIPort::_ClearErrorRegister()
{
// clear error bits
fRegs->serr = fRegs->serr;
FlushPostedWrites();
}
↑ V730 Not all members of a class are initialized inside the constructor. Consider inspecting: fSpinlock, fMaxTrimRangeBlocks, fFIS, fCommandList, fCommandTable, fPRDTable.
↑ V512 A call of the 'memcpy' function will lead to underflow of the buffer 'fCommandTable->cfis'.