/*
* Copyright 2003-2010 Haiku, Inc. All rights reserved.
* Distributed under the terms of the MIT license.
*
* Authors:
* Stephan Aßmus, superstippi@gmx.de
* Marc Flerackers, mflerackers@androme.be
* Michael Lotz, mmlr@mlotz.ch
* Marcus Overhagen, marcus@overhagen.de
*/
#include <Shape.h>
#include <Message.h>
#include <Point.h>
#include <Rect.h>
#include <ShapePrivate.h>
#include <new>
#include <stdlib.h>
#include <string.h>
// #pragma mark - BShapeIterator
BShapeIterator::BShapeIterator()
{
}
BShapeIterator::~BShapeIterator()
{
}
status_t
BShapeIterator::Iterate(BShape* shape)
{
shape_data* data = (shape_data*)shape->fPrivateData;
BPoint* points = data->ptList;
for (int32 i = 0; i < data->opCount; i++) {
int32 op = data->opList[i] & 0xFF000000;
if ((op & OP_MOVETO) != 0) {
IterateMoveTo(points);
points++;
}
if ((op & OP_LINETO) != 0) {
int32 count = data->opList[i] & 0x00FFFFFF;
IterateLineTo(count, points);
points += count;
}
if ((op & OP_BEZIERTO) != 0) {
int32 count = data->opList[i] & 0x00FFFFFF;
IterateBezierTo(count / 3, points);
points += count;
}
if ((op & OP_LARGE_ARC_TO_CW) != 0 || (op & OP_LARGE_ARC_TO_CCW) != 0
|| (op & OP_SMALL_ARC_TO_CW) != 0
|| (op & OP_SMALL_ARC_TO_CCW) != 0) {
int32 count = data->opList[i] & 0x00FFFFFF;
for (int32 i = 0; i < count / 3; i++) {
IterateArcTo(points[0].x, points[0].y, points[1].x,
op & (OP_LARGE_ARC_TO_CW | OP_LARGE_ARC_TO_CCW),
op & (OP_SMALL_ARC_TO_CCW | OP_LARGE_ARC_TO_CCW),
points[2]);
points += 3;
}
}
if ((op & OP_CLOSE) != 0)
IterateClose();
}
return B_OK;
}
status_t
BShapeIterator::IterateMoveTo(BPoint* point)
{
return B_OK;
}
status_t
BShapeIterator::IterateLineTo(int32 lineCount, BPoint* linePoints)
{
return B_OK;
}
status_t
BShapeIterator::IterateBezierTo(int32 bezierCount, BPoint* bezierPoints)
{
return B_OK;
}
status_t
BShapeIterator::IterateClose()
{
return B_OK;
}
status_t
BShapeIterator::IterateArcTo(float& rx, float& ry, float& angle, bool largeArc,
bool counterClockWise, BPoint& point)
{
return B_OK;
}
// #pragma mark - BShapeIterator FBC padding
void BShapeIterator::_ReservedShapeIterator2() {}
void BShapeIterator::_ReservedShapeIterator3() {}
void BShapeIterator::_ReservedShapeIterator4() {}
// #pragma mark - BShape
BShape::BShape()
{
InitData();
}
BShape::BShape(const BShape& other)
{
InitData();
AddShape(&other);
}
BShape::BShape(BMessage* archive)
:
BArchivable(archive)
{
InitData();
shape_data* data = (shape_data*)fPrivateData;
ssize_t size = 0;
int32 count = 0;
type_code type = 0;
archive->GetInfo("ops", &type, &count);
if (!AllocateOps(count))
return;
int32 i = 0;
const uint32* opPtr;
while (archive->FindData("ops", B_INT32_TYPE, i++,
(const void**)&opPtr, &size) == B_OK) {
data->opList[data->opCount++] = *opPtr;
}
archive->GetInfo("pts", &type, &count);
if (!AllocatePts(count)) {
Clear();
return;
}
i = 0;
const BPoint* ptPtr;
while (archive->FindData("pts", B_POINT_TYPE, i++,
(const void**)&ptPtr, &size) == B_OK) {
data->ptList[data->ptCount++] = *ptPtr;
}
}
BShape::~BShape()
{
shape_data* data = (shape_data*)fPrivateData;
if (!data->fOwnsMemory) {
free(data->opList);
free(data->ptList);
}
data->ReleaseReference();
}
status_t
BShape::Archive(BMessage* archive, bool deep) const
{
status_t result = BArchivable::Archive(archive, deep);
if (result != B_OK)
return result;
shape_data* data = (shape_data*)fPrivateData;
// If no valid shape data, return
if (data->opCount == 0 || data->ptCount == 0)
return result;
// Avoids allocation for each point
result = archive->AddData("pts", B_POINT_TYPE, data->ptList,
sizeof(BPoint), true, data->ptCount);
if (result != B_OK)
return result;
for (int32 i = 1; i < data->ptCount && result == B_OK; i++)
result = archive->AddPoint("pts", data->ptList[i]);
// Avoids allocation for each op
if (result == B_OK) {
result = archive->AddData("ops", B_INT32_TYPE, data->opList,
sizeof(int32), true, data->opCount);
}
for (int32 i = 1; i < data->opCount && result == B_OK; i++)
result = archive->AddInt32("ops", data->opList[i]);
return result;
}
BArchivable*
BShape::Instantiate(BMessage* archive)
{
if (validate_instantiation(archive, "BShape"))
return new BShape(archive);
else
return NULL;
}
BShape&
BShape::operator=(const BShape& other)
{
if (this != &other) {
Clear();
AddShape(&other);
}
return *this;
}
bool
BShape::operator==(const BShape& other) const
{
if (this == &other)
return true;
shape_data* data = (shape_data*)fPrivateData;
shape_data* otherData = (shape_data*)other.fPrivateData;
if (data->opCount != otherData->opCount)
return false;
if (data->ptCount != otherData->ptCount)
return false;
return memcmp(data->opList, otherData->opList,
data->opCount * sizeof(uint32)) == 0
&& memcmp(data->ptList, otherData->ptList,
data->ptCount * sizeof(BPoint)) == 0;
}
bool
BShape::operator!=(const BShape& other) const
{
return !(*this == other);
}
void
BShape::Clear()
{
shape_data* data = (shape_data*)fPrivateData;
data->opCount = 0;
data->opSize = 0;
if (data->opList) {
free(data->opList);
data->opList = NULL;
}
data->ptCount = 0;
data->ptSize = 0;
if (data->ptList) {
free(data->ptList);
data->ptList = NULL;
}
fState = 0;
fBuildingOp = 0;
}
BRect
BShape::Bounds() const
{
shape_data* data = (shape_data*)fPrivateData;
return data->DetermineBoundingBox();
}
BPoint
BShape::CurrentPosition() const
{
shape_data* data = (shape_data*)fPrivateData;
if (data->ptCount == 0)
return B_ORIGIN;
return data->ptList[data->ptCount - 1];
}
status_t
BShape::AddShape(const BShape* otherShape)
{
shape_data* data = (shape_data*)fPrivateData;
shape_data* otherData = (shape_data*)otherShape->fPrivateData;
if (!AllocateOps(otherData->opCount) || !AllocatePts(otherData->ptCount))
return B_NO_MEMORY;
memcpy(data->opList + data->opCount, otherData->opList,
otherData->opCount * sizeof(uint32));
data->opCount += otherData->opCount;
memcpy((void*)(data->ptList + data->ptCount), otherData->ptList,
otherData->ptCount * sizeof(BPoint));
data->ptCount += otherData->ptCount;
fBuildingOp = otherShape->fBuildingOp;
return B_OK;
}
status_t
BShape::MoveTo(BPoint point)
{
shape_data* data = (shape_data*)fPrivateData;
// If the last op is MoveTo, replace the point
if (fBuildingOp == OP_MOVETO) {
data->ptList[data->ptCount - 1] = point;
return B_OK;
}
if (!AllocateOps(1) || !AllocatePts(1))
return B_NO_MEMORY;
fBuildingOp = OP_MOVETO;
// Add op
data->opList[data->opCount++] = fBuildingOp;
// Add point
data->ptList[data->ptCount++] = point;
return B_OK;
}
status_t
BShape::LineTo(BPoint point)
{
if (!AllocatePts(1))
return B_NO_MEMORY;
shape_data* data = (shape_data*)fPrivateData;
// If the last op is MoveTo, replace the op and set the count
// If the last op is LineTo increase the count
// Otherwise add the op
if (fBuildingOp & OP_LINETO || fBuildingOp == OP_MOVETO) {
fBuildingOp |= OP_LINETO;
fBuildingOp += 1;
data->opList[data->opCount - 1] = fBuildingOp;
} else {
if (!AllocateOps(1))
return B_NO_MEMORY;
fBuildingOp = OP_LINETO + 1;
data->opList[data->opCount++] = fBuildingOp;
}
// Add point
data->ptList[data->ptCount++] = point;
return B_OK;
}
status_t
BShape::BezierTo(BPoint controlPoints[3])
{
return BezierTo(controlPoints[0], controlPoints[1], controlPoints[2]);
}
status_t
BShape::BezierTo(const BPoint& control1, const BPoint& control2,
const BPoint& endPoint)
{
if (!AllocatePts(3))
return B_NO_MEMORY;
shape_data* data = (shape_data*)fPrivateData;
// If the last op is MoveTo, replace the op and set the count
// If the last op is BezierTo increase the count
// Otherwise add the op
if (fBuildingOp & OP_BEZIERTO || fBuildingOp == OP_MOVETO) {
fBuildingOp |= OP_BEZIERTO;
fBuildingOp += 3;
data->opList[data->opCount - 1] = fBuildingOp;
} else {
if (!AllocateOps(1))
return B_NO_MEMORY;
fBuildingOp = OP_BEZIERTO + 3;
data->opList[data->opCount++] = fBuildingOp;
}
// Add points
data->ptList[data->ptCount++] = control1;
data->ptList[data->ptCount++] = control2;
data->ptList[data->ptCount++] = endPoint;
return B_OK;
}
status_t
BShape::ArcTo(float rx, float ry, float angle, bool largeArc,
bool counterClockWise, const BPoint& point)
{
if (!AllocatePts(3))
return B_NO_MEMORY;
shape_data* data = (shape_data*)fPrivateData;
uint32 op;
if (largeArc) {
if (counterClockWise)
op = OP_LARGE_ARC_TO_CCW;
else
op = OP_LARGE_ARC_TO_CW;
} else {
if (counterClockWise)
op = OP_SMALL_ARC_TO_CCW;
else
op = OP_SMALL_ARC_TO_CW;
}
// If the last op is MoveTo, replace the op and set the count
// If the last op is ArcTo increase the count
// Otherwise add the op
if (fBuildingOp == op || fBuildingOp == (op | OP_MOVETO)) {
fBuildingOp |= op;
fBuildingOp += 3;
data->opList[data->opCount - 1] = fBuildingOp;
} else {
if (!AllocateOps(1))
return B_NO_MEMORY;
fBuildingOp = op + 3;
data->opList[data->opCount++] = fBuildingOp;
}
// Add points
data->ptList[data->ptCount++] = BPoint(rx, ry);
data->ptList[data->ptCount++] = BPoint(angle, 0);
data->ptList[data->ptCount++] = point;
return B_OK;
}
status_t
BShape::Close()
{
// If the last op is Close or MoveTo, ignore this
if (fBuildingOp == OP_CLOSE || fBuildingOp == OP_MOVETO)
return B_OK;
if (!AllocateOps(1))
return B_NO_MEMORY;
shape_data* data = (shape_data*)fPrivateData;
// ToDo: Decide about that, it's not BeOS compatible
// If there was any op before we can attach the close to it
/*if (fBuildingOp) {
fBuildingOp |= OP_CLOSE;
data->opList[data->opCount - 1] = fBuildingOp;
return B_OK;
}*/
fBuildingOp = OP_CLOSE;
data->opList[data->opCount++] = fBuildingOp;
return B_OK;
}
// #pragma mark - BShape private methods
status_t
BShape::Perform(perform_code code, void* data)
{
return BArchivable::Perform(code, data);
}
// #pragma mark - BShape FBC methods
void BShape::_ReservedShape1() {}
void BShape::_ReservedShape2() {}
void BShape::_ReservedShape3() {}
void BShape::_ReservedShape4() {}
// #pragma mark - BShape private methods
void
BShape::GetData(int32* opCount, int32* ptCount, uint32** opList,
BPoint** ptList)
{
shape_data* data = (shape_data*)fPrivateData;
*opCount = data->opCount;
*ptCount = data->ptCount;
*opList = data->opList;
*ptList = data->ptList;
}
void
BShape::SetData(int32 opCount, int32 ptCount, const uint32* opList,
const BPoint* ptList)
{
Clear();
if (opCount == 0)
return;
shape_data* data = (shape_data*)fPrivateData;
if (!AllocateOps(opCount) || !AllocatePts(ptCount))
return;
memcpy(data->opList, opList, opCount * sizeof(uint32));
data->opCount = opCount;
fBuildingOp = data->opList[data->opCount - 1];
if (ptCount > 0) {
memcpy((void*)data->ptList, ptList, ptCount * sizeof(BPoint));
data->ptCount = ptCount;
}
}
void
BShape::InitData()
{
fPrivateData = new shape_data;
shape_data* data = (shape_data*)fPrivateData;
fState = 0;
fBuildingOp = 0;
data->opList = NULL;
data->opCount = 0;
data->opSize = 0;
data->ptList = NULL;
data->ptCount = 0;
data->ptSize = 0;
}
inline bool
BShape::AllocateOps(int32 count)
{
shape_data* data = (shape_data*)fPrivateData;
int32 newSize = (data->opCount + count + 255) / 256 * 256;
if (data->opSize >= newSize)
return true;
uint32* resizedArray = (uint32*)realloc(data->opList, newSize * sizeof(uint32));
if (resizedArray) {
data->opList = resizedArray;
data->opSize = newSize;
return true;
}
return false;
}
inline bool
BShape::AllocatePts(int32 count)
{
shape_data* data = (shape_data*)fPrivateData;
int32 newSize = (data->ptCount + count + 255) / 256 * 256;
if (data->ptSize >= newSize)
return true;
BPoint* resizedArray = (BPoint*)realloc((void*)data->ptList,
newSize * sizeof(BPoint));
if (resizedArray) {
data->ptList = resizedArray;
data->ptSize = newSize;
return true;
}
return false;
}
// #pragma mark - BShape binary compatibility methods
#if __GNUC__ < 3
extern "C" BShape*
__6BShapeR6BShape(void* self, BShape& copyFrom)
{
return new (self) BShape(copyFrom);
// we need to instantiate the object in the provided memory
}
extern "C" BRect
Bounds__6BShape(BShape* self)
{
return self->Bounds();
}
extern "C" void
_ReservedShapeIterator1__14BShapeIterator(BShapeIterator* self)
{
}
#else // __GNUC__ < 3
extern "C" void
_ZN14BShapeIterator23_ReservedShapeIterator1Ev(BShapeIterator* self)
{
}
#endif // __GNUC__ >= 3
↑ V630 The 'realloc' function is used to allocate memory for an array of objects which are classes containing constructors.