/* BPlusTree - BFS B+Tree implementation
**
** Copyright 2001-2002 pinc Software. All Rights Reserved.
** Released under the terms of the MIT license.
*/
#include "BPlusTree.h"
#include "Inode.h"
#include "Stack.h"
#include "dump.h"
#include <Debug.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#define MAX_NODES_IN_CACHE 20
class CacheableNode : public NodeCache::Cacheable
{
public:
CacheableNode(off_t offset,bplustree_node *node)
:
fOffset(offset),
fNode(node)
{
}
virtual ~CacheableNode()
{
if (fNode)
free(fNode);
}
virtual bool Equals(off_t offset)
{
return offset == fOffset;
}
off_t fOffset;
bplustree_node *fNode;
};
NodeCache::NodeCache(BPlusTree *tree)
: Cache<off_t>(),
fTree(tree)
{
}
Cache<off_t>::Cacheable *
NodeCache::NewCacheable(off_t offset)
{
return new CacheableNode(offset,fTree->Node(offset,false));
}
bplustree_node *
NodeCache::Get(off_t offset)
{
CacheableNode *node = (CacheableNode *)Cache<off_t>::Get(offset);
return node->fNode;
}
// #pragma mark -
BPlusTree::BPlusTree(int32 keyType,int32 nodeSize,bool allowDuplicates)
:
fStream(NULL),
fHeader(NULL),
fCache(this),
fCurrentNodeOffset(BPLUSTREE_NULL)
{
SetTo(keyType,nodeSize,allowDuplicates);
}
BPlusTree::BPlusTree(BPositionIO *stream,bool allowDuplicates)
:
fStream(NULL),
fHeader(NULL),
fCache(this),
fCurrentNodeOffset(BPLUSTREE_NULL)
{
SetTo(stream,allowDuplicates);
}
BPlusTree::BPlusTree()
:
fStream(NULL),
fHeader(NULL),
fNodeSize(BPLUSTREE_NODE_SIZE),
fAllowDuplicates(true),
fStatus(B_NO_INIT),
fCache(this),
fCurrentNodeOffset(BPLUSTREE_NULL)
{
}
BPlusTree::~BPlusTree()
{
fCache.Clear();
}
void BPlusTree::Initialize(int32 nodeSize)
{
// free old data
fCache.Clear(0,true);
if (fHeader)
free(fHeader);
fStream = NULL;
fNodeSize = nodeSize;
fHeader = (bplustree_header *)malloc(fNodeSize);
memset(fHeader,0,fNodeSize);
fCurrentNodeOffset = BPLUSTREE_NULL;
}
status_t BPlusTree::SetTo(int32 keyType,int32 nodeSize,bool allowDuplicates)
{
// initializes in-memory B+Tree
Initialize(nodeSize);
fAllowDuplicates = allowDuplicates;
fCache.SetHoldChanges(true);
// initialize b+tree header
fHeader->magic = BPLUSTREE_MAGIC;
fHeader->node_size = fNodeSize;
fHeader->max_number_of_levels = 1;
fHeader->data_type = keyType;
fHeader->root_node_pointer = fNodeSize;
fHeader->free_node_pointer = BPLUSTREE_NULL;
fHeader->maximum_size = fNodeSize * 2;
return fStatus = B_OK;
}
status_t BPlusTree::SetTo(BPositionIO *stream,bool allowDuplicates)
{
// initializes on-disk B+Tree
bplustree_header header;
ssize_t read = stream->ReadAt(0,&header,sizeof(bplustree_header));
if (read < 0)
return fStatus = read;
// is header valid?
stream->Seek(0,SEEK_END);
off_t size = stream->Position();
stream->Seek(0,SEEK_SET);
//dump_bplustree_header(&header);
if (header.magic != BPLUSTREE_MAGIC
|| header.maximum_size != size
|| (header.root_node_pointer % header.node_size) != 0
|| !header.IsValidLink(header.root_node_pointer)
|| !header.IsValidLink(header.free_node_pointer))
return fStatus = B_BAD_DATA;
fAllowDuplicates = allowDuplicates;
if (DataStream *dataStream = dynamic_cast<DataStream *>(stream))
{
uint32 toMode[] = {S_STR_INDEX, S_INT_INDEX, S_UINT_INDEX, S_LONG_LONG_INDEX,
S_ULONG_LONG_INDEX, S_FLOAT_INDEX, S_DOUBLE_INDEX};
uint32 mode = dataStream->Mode() & (S_STR_INDEX | S_INT_INDEX | S_UINT_INDEX | S_LONG_LONG_INDEX
| S_ULONG_LONG_INDEX | S_FLOAT_INDEX | S_DOUBLE_INDEX);
if (header.data_type > BPLUSTREE_DOUBLE_TYPE
|| (dataStream->Mode() & S_INDEX_DIR) && toMode[header.data_type] != mode
|| !dataStream->IsDirectory())
return fStatus = B_BAD_TYPE;
// although it's in stat.h, the S_ALLOW_DUPS flag is obviously unused
fAllowDuplicates = (dataStream->Mode() & (S_INDEX_DIR | 0777)) == S_INDEX_DIR;
//printf("allows duplicates? %s\n",fAllowDuplicates ? "yes" : "no");
}
Initialize(header.node_size);
memcpy(fHeader,&header,sizeof(bplustree_header));
fStream = stream;
bplustree_node *node = fCache.Get(header.root_node_pointer);
//if (node)
// dump_bplustree_node(node);
return fStatus = node && CheckNode(node) ? B_OK : B_BAD_DATA;
}
status_t BPlusTree::InitCheck()
{
return fStatus;
}
struct validate_info {
off_t offset;
off_t from;
bool free;
};
status_t
BPlusTree::Validate(bool verbose)
{
// validates the on-disk b+tree
// (for now only the node integrity is checked)
if (!fStream)
return B_OK;
struct validate_info info;
Stack<validate_info> stack;
info.offset = fHeader->root_node_pointer;
info.from = BPLUSTREE_NULL;
info.free = false;
stack.Push(info);
if (fHeader->free_node_pointer != BPLUSTREE_NULL) {
info.offset = fHeader->free_node_pointer;
info.free = true;
stack.Push(info);
}
char escape[3] = {0x1b, '[', 0};
int32 count = 0,freeCount = 0;
while (true) {
if (!stack.Pop(&info)) {
if (verbose) {
printf(" %" B_PRId32 " B+tree node(s) processed (%" B_PRId32
" free node(s)).\n", count, freeCount);
}
return B_OK;
}
if (!info.free && verbose && ++count % 10 == 0)
printf(" %" B_PRId32 "%s1A\n", count, escape);
else if (info.free)
freeCount++;
bplustree_node *node;
if ((node = fCache.Get(info.offset)) == NULL
|| !info.free && !CheckNode(node)) {
if (verbose) {
fprintf(stderr," B+Tree: Could not get data at position %"
B_PRIdOFF " (referenced by node at %" B_PRIdOFF ")\n",
info.offset, info.from);
if ((node = fCache.Get(info.from)) != NULL)
dump_bplustree_node(node,fHeader);
}
return B_BAD_DATA;
}
info.from = info.offset;
if (node->overflow_link != BPLUSTREE_NULL && !info.free) {
info.offset = node->overflow_link;
stack.Push(info);
//dump_bplustree_node(node,fHeader);
off_t *values = node->Values();
for (int32 i = 0;i < node->all_key_count;i++) {
info.offset = values[i];
stack.Push(info);
}
} else if (node->left_link != BPLUSTREE_NULL && info.free) {
info.offset = node->left_link;
stack.Push(info);
}
}
}
status_t
BPlusTree::WriteTo(BPositionIO *stream)
{
ssize_t written = stream->WriteAt(0,fHeader,fNodeSize);
if (written < fNodeSize)
return written < B_OK ? written : B_IO_ERROR;
for (off_t offset = fNodeSize;offset < fHeader->maximum_size;offset += fNodeSize)
{
bplustree_node *node = fCache.Get(offset);
if (node == NULL)
return B_ERROR;
written = stream->WriteAt(offset,node,fNodeSize);
if (written < fNodeSize)
return written < B_OK ? written : B_IO_ERROR;
}
return stream->SetSize(fHeader->maximum_size);
}
// #pragma mark -
void BPlusTree::SetCurrentNode(bplustree_node *node,off_t offset,int8 to)
{
fCurrentNodeOffset = offset;
fCurrentKey = to == BPLUSTREE_BEGIN ? -1 : node->all_key_count;
fDuplicateNode = BPLUSTREE_NULL;
}
status_t BPlusTree::Goto(int8 to)
{
if (fHeader == NULL)
return B_BAD_VALUE;
Stack<off_t> stack;
if (stack.Push(fHeader->root_node_pointer) < B_OK)
return B_NO_MEMORY;
bplustree_node *node;
off_t pos;
while (stack.Pop(&pos) && (node = fCache.Get(pos)) != NULL && CheckNode(node))
{
// is the node a leaf node?
if (node->overflow_link == BPLUSTREE_NULL)
{
SetCurrentNode(node,pos,to);
return B_OK;
}
if (to == BPLUSTREE_END || node->all_key_count == 0)
pos = node->overflow_link;
else
{
if (node->all_key_length > fNodeSize
|| (addr_t)node->Values() > (addr_t)node + fNodeSize
- 8 * node->all_key_count)
return B_ERROR;
pos = *node->Values();
}
if (stack.Push(pos) < B_OK)
break;
}
return B_ERROR;
}
status_t BPlusTree::Traverse(int8 direction,void *key,uint16 *keyLength,uint16 maxLength,off_t *value)
{
if (fCurrentNodeOffset == BPLUSTREE_NULL
&& Goto(direction == BPLUSTREE_FORWARD ? BPLUSTREE_BEGIN : BPLUSTREE_END) < B_OK)
return B_ERROR;
bplustree_node *node;
if (fDuplicateNode != BPLUSTREE_NULL)
{
// regardless of traverse direction the duplicates are always presented in
// the same order; since they are all considered as equal, this shouldn't
// cause any problems
if (!fIsFragment || fDuplicate < fNumDuplicates)
node = fCache.Get(bplustree_node::FragmentOffset(fDuplicateNode));
else
node = NULL;
if (node != NULL)
{
if (!fIsFragment && fDuplicate >= fNumDuplicates)
{
// if the node is out of duplicates, we go directly to the next one
fDuplicateNode = node->right_link;
if (fDuplicateNode != BPLUSTREE_NULL
&& (node = fCache.Get(fDuplicateNode)) != NULL)
{
fNumDuplicates = node->CountDuplicates(fDuplicateNode,false);
fDuplicate = 0;
}
}
if (fDuplicate < fNumDuplicates)
{
*value = node->DuplicateAt(fDuplicateNode,fIsFragment,fDuplicate++);
return B_OK;
}
}
fDuplicateNode = BPLUSTREE_NULL;
}
off_t savedNodeOffset = fCurrentNodeOffset;
if ((node = fCache.Get(fCurrentNodeOffset)) == NULL || !CheckNode(node))
return B_ERROR;
fCurrentKey += direction;
// is the current key in the current node?
while ((direction == BPLUSTREE_FORWARD && fCurrentKey >= node->all_key_count)
|| (direction == BPLUSTREE_BACKWARD && fCurrentKey < 0))
{
fCurrentNodeOffset = direction == BPLUSTREE_FORWARD ? node->right_link : node->left_link;
// are there any more nodes?
if (fCurrentNodeOffset != BPLUSTREE_NULL)
{
node = fCache.Get(fCurrentNodeOffset);
if (!node || !CheckNode(node))
return B_ERROR;
// reset current key
fCurrentKey = direction == BPLUSTREE_FORWARD ? 0 : node->all_key_count;
}
else
{
// there are no nodes left, so turn back to the last key
fCurrentNodeOffset = savedNodeOffset;
fCurrentKey = direction == BPLUSTREE_FORWARD ? node->all_key_count : -1;
return B_ENTRY_NOT_FOUND;
}
}
if (node->all_key_count == 0)
return B_ERROR; //B_ENTRY_NOT_FOUND;
uint16 length;
uint8 *keyStart = node->KeyAt(fCurrentKey,&length);
length = min_c(length,maxLength);
memcpy(key,keyStart,length);
if (fHeader->data_type == BPLUSTREE_STRING_TYPE) // terminate string type
{
if (length == maxLength)
length--;
((char *)key)[length] = '\0';
}
*keyLength = length;
off_t offset = node->Values()[fCurrentKey];
// duplicate fragments?
uint8 type = bplustree_node::LinkType(offset);
if (type == BPLUSTREE_DUPLICATE_FRAGMENT || type == BPLUSTREE_DUPLICATE_NODE)
{
fDuplicateNode = offset;
node = fCache.Get(bplustree_node::FragmentOffset(fDuplicateNode));
if (node == NULL)
return B_ERROR;
fIsFragment = type == BPLUSTREE_DUPLICATE_FRAGMENT;
fNumDuplicates = node->CountDuplicates(offset,fIsFragment);
if (fNumDuplicates)
{
// give back first duplicate
fDuplicate = 1;
offset = node->DuplicateAt(offset,fIsFragment,0);
}
else
{
// shouldn't happen, but we're dealing here with corrupt disks...
fDuplicateNode = BPLUSTREE_NULL;
offset = 0;
}
}
*value = offset;
return B_OK;
}
int32 BPlusTree::CompareKeys(const void *key1, int keyLength1, const void *key2, int keyLength2)
{
switch (fHeader->data_type)
{
case BPLUSTREE_STRING_TYPE:
{
int len = min_c(keyLength1,keyLength2);
int result = strncmp((const char *)key1,(const char *)key2,len);
if (result == 0)
result = keyLength1 - keyLength2;
return result;
}
case BPLUSTREE_INT32_TYPE:
return *(int32 *)key1 - *(int32 *)key2;
case BPLUSTREE_UINT32_TYPE:
{
if (*(uint32 *)key1 == *(uint32 *)key2)
return 0;
else if (*(uint32 *)key1 > *(uint32 *)key2)
return 1;
return -1;
}
case BPLUSTREE_INT64_TYPE:
{
if (*(int64 *)key1 == *(int64 *)key2)
return 0;
else if (*(int64 *)key1 > *(int64 *)key2)
return 1;
return -1;
}
case BPLUSTREE_UINT64_TYPE:
{
if (*(uint64 *)key1 == *(uint64 *)key2)
return 0;
else if (*(uint64 *)key1 > *(uint64 *)key2)
return 1;
return -1;
}
case BPLUSTREE_FLOAT_TYPE:
{
float result = *(float *)key1 - *(float *)key2;
if (result == 0.0f)
return 0;
return (result < 0.0f) ? -1 : 1;
}
case BPLUSTREE_DOUBLE_TYPE:
{
double result = *(double *)key1 - *(double *)key2;
if (result == 0.0)
return 0;
return (result < 0.0) ? -1 : 1;
}
}
return 0;
}
status_t BPlusTree::FindKey(bplustree_node *node,uint8 *key,uint16 keyLength,uint16 *index,off_t *next)
{
if (node->all_key_count == 0)
{
if (index)
*index = 0;
if (next)
*next = node->overflow_link;
return B_ENTRY_NOT_FOUND;
}
off_t *values = node->Values();
int16 saveIndex = 0;
// binary search in the key array
for (int16 first = 0,last = node->all_key_count - 1;first <= last;)
{
uint16 i = (first + last) >> 1;
uint16 searchLength;
uint8 *searchKey = node->KeyAt(i,&searchLength);
int32 cmp = CompareKeys(key,keyLength,searchKey,searchLength);
if (cmp < 0)
{
last = i - 1;
saveIndex = i;
}
else if (cmp > 0)
{
saveIndex = first = i + 1;
}
else
{
if (index)
*index = i;
if (next)
*next = values[i];
return B_OK;
}
}
if (index)
*index = saveIndex;
if (next)
{
if (saveIndex == node->all_key_count)
*next = node->overflow_link;
else
*next = values[saveIndex];
}
return B_ENTRY_NOT_FOUND;
}
status_t BPlusTree::SeekDown(Stack<node_and_key> &stack,uint8 *key,uint16 keyLength)
{
node_and_key nodeAndKey;
nodeAndKey.nodeOffset = fHeader->root_node_pointer;
nodeAndKey.keyIndex = 0;
bplustree_node *node;
while ((node = fCache.Get(nodeAndKey.nodeOffset)) != NULL && CheckNode(node)) {
// if we are already on leaf level, we're done
if (node->overflow_link == BPLUSTREE_NULL) {
// put the node on the stack
// node that the keyIndex is not properly set here!
nodeAndKey.keyIndex = 0;
stack.Push(nodeAndKey);
return B_OK;
}
off_t nextOffset;
status_t status = FindKey(node,key,keyLength,&nodeAndKey.keyIndex,&nextOffset);
if (status == B_ENTRY_NOT_FOUND && nextOffset == nodeAndKey.nodeOffset)
return B_ERROR;
// put the node & the correct keyIndex on the stack
stack.Push(nodeAndKey);
nodeAndKey.nodeOffset = nextOffset;
}
return B_ERROR;
}
void BPlusTree::InsertKey(bplustree_node *node,uint8 *key,uint16 keyLength,off_t value,uint16 index)
{
// should never happen, but who knows?
if (index > node->all_key_count)
return;
off_t *values = node->Values();
uint16 *keyLengths = node->KeyLengths();
uint8 *keys = node->Keys();
node->all_key_count++;
node->all_key_length += keyLength;
off_t *newValues = node->Values();
uint16 *newKeyLengths = node->KeyLengths();
// move values and copy new value into them
memmove(newValues + index + 1,values + index,sizeof(off_t) * (node->all_key_count - 1 - index));
memmove(newValues,values,sizeof(off_t) * index);
newValues[index] = value;
// move and update key length index
for (uint16 i = node->all_key_count;i-- > index + 1;)
newKeyLengths[i] = keyLengths[i - 1] + keyLength;
memmove(newKeyLengths,keyLengths,sizeof(uint16) * index);
int32 keyStart;
newKeyLengths[index] = keyLength + (keyStart = index > 0 ? newKeyLengths[index - 1] : 0);
// move keys and copy new key into them
int32 size = node->all_key_length - newKeyLengths[index];
if (size > 0)
memmove(keys + newKeyLengths[index],keys + newKeyLengths[index] - keyLength,size);
memcpy(keys + keyStart,key,keyLength);
}
status_t BPlusTree::InsertDuplicate(bplustree_node */*node*/,uint16 /*index*/)
{
printf("DUPLICATE ENTRY!!\n");
// /* handle dup keys */
// if (dupflg == 0)
// {
// bt_errno(b) = BT_DUPKEY;
// goto bombout;
// }
// else
// {
// /* paste new data ptr in page */
// /* and write it out again. */
// off_t *p;
// p = (off_t *)KEYCLD(op->p);
// *(p + keyat) = rrn;
// op->flags = BT_CHE_DIRTY;
// if(bt_wpage(b,op) == BT_ERR ||
// bt_wpage(b,kp) == BT_ERR)
// return(BT_ERR);
//
// /* mark all as well with tree */
// bt_clearerr(b);
// return(BT_OK);
// }
return B_OK;
}
status_t BPlusTree::SplitNode(bplustree_node *node,off_t nodeOffset,uint16 *_keyIndex,uint8 *key,uint16 *_keyLength,off_t *_value)
{
if (*_keyIndex > node->all_key_count + 1)
return B_BAD_VALUE;
//printf("before (insert \"%s\" (%d bytes) at %d):\n\n",key,*_keyLength,*_keyIndex);
//dump_bplustree_node(node,fHeader);
//hexdump(node,fNodeSize);
off_t otherOffset;
bplustree_node *other = fCache.Get(otherOffset = fHeader->maximum_size); //Node(otherOffset = fHeader->maximum_size/*,false*/);
if (other == NULL)
return B_NO_MEMORY;
uint16 *inKeyLengths = node->KeyLengths();
off_t *inKeyValues = node->Values();
uint8 *inKeys = node->Keys();
uint8 *outKeys = other->Keys();
uint16 keyIndex = *_keyIndex;
// how many keys will fit in one (half) page?
// "bytes" is the number of bytes written for the new key,
// "bytesBefore" are the bytes before that key
// "bytesAfter" are the bytes after the new key, if any
int32 bytes = 0,bytesBefore = 0,bytesAfter = 0;
size_t size = fNodeSize >> 1;
int32 out,in;
for (in = out = 0;in < node->all_key_count + 1;) {
if (!bytes)
bytesBefore = in > 0 ? inKeyLengths[in - 1] : 0;
if (in == keyIndex && !bytes) {
bytes = *_keyLength;
} else {
if (keyIndex < out) {
bytesAfter = inKeyLengths[in] - bytesBefore;
// fix the key lengths for the new node
inKeyLengths[in] = bytesAfter + bytesBefore + bytes;
} //else
in++;
}
out++;
if (round_up(sizeof(bplustree_node) + bytesBefore + bytesAfter + bytes) +
out * (sizeof(uint16) + sizeof(off_t)) >= size) {
// we have found the number of keys in the new node!
break;
}
}
// if the new key was not inserted, set the length of the keys
// that can be copied directly
if (keyIndex >= out && in > 0)
bytesBefore = inKeyLengths[in - 1];
if (bytesBefore < 0 || bytesAfter < 0)
return B_BAD_DATA;
//printf("put %ld keys in the other node (%ld, %ld, %ld) (in = %ld)\n",out,bytesBefore,bytes,bytesAfter,in);
other->left_link = node->left_link;
other->right_link = nodeOffset;
other->all_key_length = bytes + bytesBefore + bytesAfter;
other->all_key_count = out;
//printf("-> used = %ld (bplustree_node = %ld bytes)\n",other->Used(),sizeof(bplustree_node));
uint16 *outKeyLengths = other->KeyLengths();
off_t *outKeyValues = other->Values();
int32 keys = out > keyIndex ? keyIndex : out;
if (bytesBefore) {
// copy the keys
memcpy(outKeys,inKeys,bytesBefore);
memcpy(outKeyLengths,inKeyLengths,keys * sizeof(uint16));
memcpy(outKeyValues,inKeyValues,keys * sizeof(off_t));
}
if (bytes) {
// copy the newly inserted key
memcpy(outKeys + bytesBefore,key,bytes);
outKeyLengths[keyIndex] = bytes + bytesBefore;
outKeyValues[keyIndex] = *_value;
if (bytesAfter) {
// copy the keys after the new key
memcpy(outKeys + bytesBefore + bytes,inKeys + bytesBefore,bytesAfter);
keys = out - keyIndex - 1;
memcpy(outKeyLengths + keyIndex + 1,inKeyLengths + keyIndex,keys * sizeof(uint16));
memcpy(outKeyValues + keyIndex + 1,inKeyValues + keyIndex,keys * sizeof(off_t));
}
}
// if the new key was already inserted, we shouldn't use it again
if (in != out)
keyIndex--;
int32 total = bytesBefore + bytesAfter;
// if we have split an index node, we have to drop the first key
// of the next node (which can also be the new key to insert)
if (node->overflow_link != BPLUSTREE_NULL) {
if (in == keyIndex) {
other->overflow_link = *_value;
keyIndex--;
} else {
other->overflow_link = inKeyValues[in];
total = inKeyLengths[in++];
}
}
// and now the same game for the other page and the rest of the keys
// (but with memmove() instead of memcpy(), because they may overlap)
bytesBefore = bytesAfter = bytes = 0;
out = 0;
int32 skip = in;
while (in < node->all_key_count + 1) {
//printf("in = %ld, keyIndex = %d, bytes = %ld\n",in,keyIndex,bytes);
if (in == keyIndex && !bytes) {
bytesBefore = in > skip ? inKeyLengths[in - 1] : 0;
//printf("bytesBefore = %ld\n",bytesBefore);
bytes = *_keyLength;
} else if (in < node->all_key_count) {
//printf("1.inKeyLength[%ld] = %u\n",in,inKeyLengths[in]);
inKeyLengths[in] -= total;
if (bytes) {
inKeyLengths[in] += bytes;
bytesAfter = inKeyLengths[in] - bytesBefore - bytes;
//printf("2.inKeyLength[%ld] = %u, bytesAfter = %ld, bytesBefore = %ld\n",in,inKeyLengths[in],bytesAfter,bytesBefore);
}
in++;
} else
in++;
out++;
//printf("-> out = %ld, keylen = %ld, %ld bytes total\n",out,bytesBefore,round_up(sizeof(bplustree_node) + bytesBefore + bytesAfter + bytes) +
// out * (sizeof(uint16) + sizeof(off_t)));
if (in > node->all_key_count && keyIndex < in)
break;
}
//printf("bytes = (%ld, %ld, %ld), in = %ld, total = %ld\n",bytesBefore,bytes,bytesAfter,in,total);
if (keyIndex >= in && keyIndex - skip < out) {
bytesAfter = inKeyLengths[in] - bytesBefore - total;
} else if (keyIndex < skip)
bytesBefore = node->all_key_length - total;
//printf("bytes = (%ld, %ld, %ld), in = %ld, total = %ld\n",bytesBefore,bytes,bytesAfter,in,total);
if (bytesBefore < 0 || bytesAfter < 0)
return B_BAD_DATA;
node->left_link = otherOffset;
// right link, and overflow link can stay the same
node->all_key_length = bytes + bytesBefore + bytesAfter;
node->all_key_count = out - 1;
// array positions have changed
outKeyLengths = node->KeyLengths();
outKeyValues = node->Values();
//printf("put %ld keys in the first node (%ld, %ld, %ld) (in = %ld)\n",out,bytesBefore,bytes,bytesAfter,in);
// move the keys in the old node: the order is important here,
// because we don't want to overwrite any contents
keys = keyIndex <= skip ? out : keyIndex - skip;
keyIndex -= skip;
if (bytesBefore)
memmove(inKeys,inKeys + total,bytesBefore);
if (bytesAfter)
memmove(inKeys + bytesBefore + bytes,inKeys + total + bytesBefore,bytesAfter);
if (bytesBefore)
memmove(outKeyLengths,inKeyLengths + skip,keys * sizeof(uint16));
in = out - keyIndex - 1;
if (bytesAfter)
memmove(outKeyLengths + keyIndex + 1,inKeyLengths + skip + keyIndex,in * sizeof(uint16));
if (bytesBefore)
memmove(outKeyValues,inKeyValues + skip,keys * sizeof(off_t));
if (bytesAfter)
memmove(outKeyValues + keyIndex + 1,inKeyValues + skip + keyIndex,in * sizeof(off_t));
if (bytes) {
// finally, copy the newly inserted key (don't overwrite anything)
memcpy(inKeys + bytesBefore,key,bytes);
outKeyLengths[keyIndex] = bytes + bytesBefore;
outKeyValues[keyIndex] = *_value;
}
//puts("\n!!!!!!!!!!!!!!! after: !!!!!!!!!!!!!!!\n");
//dump_bplustree_node(other,fHeader);
//hexdump(other,fNodeSize);
//puts("\n");
//dump_bplustree_node(node,fHeader);
//hexdump(node,fNodeSize);
// write the updated nodes back
fCache.SetDirty(otherOffset,true);
fCache.SetDirty(nodeOffset,true);
// update the right link of the node in the left of the new node
if (other->left_link != BPLUSTREE_NULL) {
bplustree_node *left = fCache.Get(other->left_link);
if (left != NULL) {
left->right_link = otherOffset;
fCache.SetDirty(other->left_link,true);
}
}
// prepare key to insert in the parent node
//printf("skip: %ld, count-1: %u\n",skip,other->all_key_count - 1);
uint16 length;
uint8 *lastKey = other->KeyAt(other->all_key_count - 1,&length);
memcpy(key,lastKey,length);
*_keyLength = length;
*_value = otherOffset;
return B_OK;
}
status_t BPlusTree::Insert(uint8 *key,uint16 keyLength,off_t value)
{
if (keyLength < BPLUSTREE_MIN_KEY_LENGTH || keyLength > BPLUSTREE_MAX_KEY_LENGTH)
return B_BAD_VALUE;
Stack<node_and_key> stack;
if (SeekDown(stack,key,keyLength) != B_OK)
return B_ERROR;
uint8 keyBuffer[BPLUSTREE_MAX_KEY_LENGTH + 1];
memcpy(keyBuffer,key,keyLength);
keyBuffer[keyLength] = 0;
off_t valueToInsert = value;
fCurrentNodeOffset = BPLUSTREE_NULL;
node_and_key nodeAndKey;
bplustree_node *node;
uint32 count = 0;
while (stack.Pop(&nodeAndKey) && (node = fCache.Get(nodeAndKey.nodeOffset)) != NULL && CheckNode(node))
{
if (count++ == 0) // first round, check for duplicate entries
{
status_t status = FindKey(node,key,keyLength,&nodeAndKey.keyIndex);
if (status == B_ERROR)
return B_ERROR;
// is this a duplicate entry?
if (status == B_OK && node->overflow_link == BPLUSTREE_NULL)
{
if (fAllowDuplicates)
return InsertDuplicate(node,nodeAndKey.keyIndex);
else
return B_NAME_IN_USE;
}
}
// is the node big enough to hold the pair?
if (int32(round_up(sizeof(bplustree_node) + node->all_key_length + keyLength)
+ (node->all_key_count + 1) * (sizeof(uint16) + sizeof(off_t))) < fNodeSize)
{
InsertKey(node,keyBuffer,keyLength,valueToInsert,nodeAndKey.keyIndex);
fCache.SetDirty(nodeAndKey.nodeOffset,true);
return B_OK;
}
else
{
// do we need to allocate a new root node? if so, then do
// it now
bplustree_node *rootNode = NULL;
off_t newRoot = BPLUSTREE_NULL;
if (nodeAndKey.nodeOffset == fHeader->root_node_pointer) {
rootNode = fCache.Get(newRoot = fHeader->maximum_size);
if (rootNode == NULL) {
// the tree is most likely dead
return B_NO_MEMORY;
}
}
if (SplitNode(node,nodeAndKey.nodeOffset,&nodeAndKey.keyIndex,keyBuffer,&keyLength,&valueToInsert) < B_OK) {
if (newRoot != BPLUSTREE_NULL) {
// free root node
}
return B_ERROR;
}
if (newRoot != BPLUSTREE_NULL) {
rootNode->overflow_link = nodeAndKey.nodeOffset;
InsertKey(rootNode,keyBuffer,keyLength,node->left_link,0);
fHeader->root_node_pointer = newRoot;
fHeader->max_number_of_levels++;
// write header
fCache.SetDirty(newRoot,true);
return B_OK;
}
}
}
return B_ERROR;
}
status_t BPlusTree::Find(uint8 *key,uint16 keyLength,off_t *value)
{
if (keyLength < BPLUSTREE_MIN_KEY_LENGTH || keyLength > BPLUSTREE_MAX_KEY_LENGTH)
return B_BAD_VALUE;
Stack<node_and_key> stack;
if (SeekDown(stack,key,keyLength) != B_OK)
return B_ERROR;
fCurrentNodeOffset = BPLUSTREE_NULL;
node_and_key nodeAndKey;
bplustree_node *node;
if (stack.Pop(&nodeAndKey) && (node = fCache.Get(nodeAndKey.nodeOffset)) != NULL && CheckNode(node))
{
status_t status = FindKey(node,key,keyLength,&nodeAndKey.keyIndex);
if (status == B_ERROR)
return B_ERROR;
SetCurrentNode(node,nodeAndKey.nodeOffset);
if (status == B_OK && node->overflow_link == BPLUSTREE_NULL)
{
*value = node->Values()[nodeAndKey.keyIndex];
return B_OK;
}
}
return B_ENTRY_NOT_FOUND;
}
// #pragma mark -
bool
BPlusTree::CheckNode(bplustree_node *node)
{
if (!fHeader->IsValidLink(node->left_link)
|| !fHeader->IsValidLink(node->right_link)
|| !fHeader->IsValidLink(node->overflow_link)
|| (int8 *)node->Values() + node->all_key_count * sizeof(off_t) > (int8 *)node + fNodeSize)
return false;
return true;
}
bplustree_node *BPlusTree::Node(off_t nodeOffset,bool check)
{
/*printf("1: %d,%d,%d\n",
nodeOffset > fHeader->maximum_size - fNodeSize,
nodeOffset < 0 && nodeOffset != BPLUSTREE_NULL,
(nodeOffset % fNodeSize) != 0);
*/
// the super node is always in memory, and shouldn't
// never be taken out of the cache
if (nodeOffset > fHeader->maximum_size /*- fNodeSize*/
|| nodeOffset <= 0 && nodeOffset != BPLUSTREE_NULL
|| (nodeOffset % fNodeSize) != 0)
return NULL;
bplustree_node *node = (bplustree_node *)malloc(fNodeSize);
if (node == NULL)
return NULL;
if (nodeOffset == BPLUSTREE_NULL || !fStream)
{
node->left_link = BPLUSTREE_NULL;
node->right_link = BPLUSTREE_NULL;
node->overflow_link = BPLUSTREE_NULL;
node->all_key_count = 0;
node->all_key_length = 0;
}
else if (fStream && fStream->ReadAt(nodeOffset,node,fNodeSize) < fNodeSize)
{
free(node);
return NULL;
}
if (check && node != NULL)
{
// sanity checks (links, all_key_count)
if (!fHeader->IsValidLink(node->left_link)
|| !fHeader->IsValidLink(node->right_link)
|| !fHeader->IsValidLink(node->overflow_link)
|| (int8 *)node->Values() + node->all_key_count * sizeof(off_t) > (int8 *)node + fNodeSize)
return NULL;
}
if (!fStream && nodeOffset > fHeader->maximum_size - fNodeSize) {
// do some hacks here
fHeader->maximum_size += fNodeSize;
}
return node;
}
void BPlusTree::SetHoldChanges(bool hold)
{
fCache.SetHoldChanges(hold);
}
// #pragma mark -
uint8 *bplustree_node::KeyAt(int32 index,uint16 *keyLength) const
{
if (index < 0 || index > all_key_count)
return NULL;
uint8 *keyStart = Keys();
uint16 *keyLengths = KeyLengths();
*keyLength = keyLengths[index] - (index != 0 ? keyLengths[index - 1] : 0);
if (index > 0)
keyStart += keyLengths[index - 1];
return keyStart;
}
uint8 bplustree_node::CountDuplicates(off_t offset,bool isFragment) const
{
// the duplicate fragment handling is currently hard-coded to a node size
// of 1024 bytes - with future versions of BFS, this may be a problem
if (isFragment)
{
uint32 fragment = 8 * ((uint64)offset & 0x3ff);
return ((off_t *)this)[fragment];
}
return overflow_link;
}
off_t bplustree_node::DuplicateAt(off_t offset,bool isFragment,int8 index) const
{
uint32 start;
if (isFragment)
start = 8 * ((uint64)offset & 0x3ff);
else
start = 2;
return ((off_t *)this)[start + 1 + index];
}
↑ V730 Not all members of a class are initialized inside the constructor. Consider inspecting: fCurrentKey, fDuplicateNode, fDuplicate, fNumDuplicates, fIsFragment.