/*
* Copyright (c) 1999-2000, Eric Moon.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions, and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// AudioBuffer.cpp
// e.moon 31mar99
//
#include <Buffer.h>
#include <Debug.h>
#include <RealtimeAlloc.h>
#include "AudioBuffer.h"
#include <cmath>
#include <cstring>
#include "audio_buffer_tools.h"
const media_raw_audio_format AudioBuffer::defaultFormat = {
44100.0,
2,
media_raw_audio_format::B_AUDIO_FLOAT,
media_raw_audio_format::wildcard.byte_order,
media_raw_audio_format::wildcard.buffer_size
};
// -------------------------------------------------------- //
// ctor/dtor/accessors
// -------------------------------------------------------- //
AudioBuffer::AudioBuffer(
const media_raw_audio_format& format,
rtm_pool* pFromPool) :
RawBuffer(
(format.format & 0x0f) * format.channel_count,
0,
true,
pFromPool),
m_format(format) {}
AudioBuffer::AudioBuffer(
const media_raw_audio_format& format,
uint32 frames,
bool bCircular,
rtm_pool* pFromPool) :
RawBuffer(
(format.format & 0x0f) * format.channel_count,
0,
bCircular,
pFromPool),
m_format(format) {
resize(frames);
}
AudioBuffer::AudioBuffer(
const media_raw_audio_format& format,
void* pData,
uint32 frames,
bool bCircular,
rtm_pool* pFromPool) :
RawBuffer(
pData,
(format.format & 0x0f) * format.channel_count,
frames,
bCircular,
pFromPool) {}
AudioBuffer::AudioBuffer(
const media_raw_audio_format& format,
BBuffer* pBuffer,
bool bCircular) :
RawBuffer(),
m_format(format)
{
if(pBuffer->Header()->type != B_MEDIA_RAW_AUDIO)
return;
// reference it:
m_pData = pBuffer->Data();
m_frameSize = (m_format.format & 0x0f) * m_format.channel_count;
m_frames = pBuffer->Header()->size_used / m_frameSize;
m_allocatedSize = 0;
m_bOwnData = false;
m_bCircular = bCircular;
}
// generate a reference (point) to the target's buffer
AudioBuffer::AudioBuffer(const AudioBuffer& clone) :
RawBuffer(clone),
m_format(clone.m_format) {}
AudioBuffer& AudioBuffer::operator=(const AudioBuffer& clone) {
RawBuffer::operator=(clone);
m_format = clone.m_format;
return *this;
}
AudioBuffer::~AudioBuffer() {}
// format access
void AudioBuffer::setFormat(const media_raw_audio_format& format) {
m_format = format;
}
const media_raw_audio_format& AudioBuffer::format() const {
return m_format;
}
// extra adoption support
void AudioBuffer::adopt(
const media_raw_audio_format& format,
void* pData,
uint32 frames,
bool bCircular,
rtm_pool* pFromPool) {
// clean up myself first
free();
// reference
operator=(AudioBuffer(format, pData, frames, bCircular, pFromPool));
// mark ownership
m_bOwnData = true;
}
// as with RawBuffer::adopt(), returns false if the target
// doesn't own its buffer, but references it anyway
bool AudioBuffer::adopt(AudioBuffer& target) {
m_format = target.m_format;
return RawBuffer::adopt(target);
}
// -------------------------------------------------------- //
// operations
// -------------------------------------------------------- //
// test for format equivalence against target buffer
// (ie. determine whether any conversion would be necessary
// for copy/mix operations)
bool AudioBuffer::formatSameAs(const AudioBuffer& target) const {
return
m_format.format == target.m_format.format &&
m_format.channel_count == target.m_format.channel_count;
}
// copy to target audio buffer, applying any necessary
// format conversions. behaves like rawCopyTo().
uint32 AudioBuffer::copyTo(
AudioBuffer& target,
uint32* pioFromFrame,
uint32* pioTargetFrame,
uint32 frames) const {
// simplest case:
if(formatSameAs(target))
return rawCopyTo(target, pioFromFrame, pioTargetFrame, frames);
// sanity checks
ASSERT(m_pData);
ASSERT(m_frames);
ASSERT(target.m_pData);
// figure byte offsets & sizes
uint32 fromOffset = *pioFromFrame * m_frameSize;
uint32 targetOffset = *pioTargetFrame * m_frameSize;
uint32 size = m_frames * m_frameSize;
uint32 targetSize = target.m_frames * target.m_frameSize;
// figure number of samples to convert
uint32 toCopy = frames * m_format.channel_count;
if(target.m_bCircular) {
if(toCopy > targetSize)
toCopy = targetSize;
} else {
if(toCopy > (targetSize-targetOffset))
toCopy = (targetSize-targetOffset);
}
uint32 remaining = toCopy;
uint32 sampleSize = m_frameSize / m_format.channel_count;
// convert and copy a sample at a time
for(; remaining; remaining -= sampleSize) {
convert_sample(
(void*) ((int8*)m_pData + fromOffset),
(void*) ((int8*)target.m_pData + targetOffset),
m_format.format,
target.m_format.format);
fromOffset += sampleSize;
if(fromOffset == size)
fromOffset = 0;
targetOffset += sampleSize;
if(targetOffset == targetSize)
targetOffset = 0;
}
// write new offsets
*pioFromFrame = fromOffset / m_frameSize;
*pioTargetFrame = targetOffset / m_frameSize;
return toCopy;
}
uint32 AudioBuffer::copyTo(
AudioBuffer& target,
uint32* pioFromFrame,
uint32* pioTargetFrame) const {
return copyTo(target, pioFromFrame, pioTargetFrame, m_frames);
}
// mix to target audio buffer, applying any necessary
// format conversions. behaves like rawCopyTo().
uint32 AudioBuffer::mixTo(
AudioBuffer& target,
uint32* pioFromFrame,
uint32* pioTargetFrame,
uint32 frames,
float fGain /*=1.0*/) const { return 0; } //nyi
// calculate minimum & maximum peak levels
// (converted/scaled to given type if necessary)
// pMax and pMin must point to arrays with enough room
// for one value per channel. existing array values aren't
// cleared first.
//
// (if pMin isn't provided, the maximum absolute levels will
// be written to pMax)
void AudioBuffer::findMin(float* pMin, uint32* pAt /*=0*/) const {
findMin(0, m_frames, pMin, pAt);
}
uint32 AudioBuffer::findMin(uint32 fromFrame, uint32 frameCount,
float* pMin, uint32* pAt /*=0*/) const {
size_t channels = m_format.channel_count;
size_t samples = m_frames * channels;
size_t bytesPerSample = m_format.format & 0x0f;
size_t firstSample = fromFrame * channels;
size_t remaining = frameCount * channels;
if(!m_pData)
return fromFrame;
int8* pCur = (int8*)m_pData + (firstSample * bytesPerSample);
uint32 n;
if(pAt) {
// reset pAt
for(n = 0; n < channels; n++)
pAt[n] = UINT32_MAX;
}
// find minimum for each channel
for(
n = firstSample;
remaining;
remaining--, n++, pCur += bytesPerSample) {
// wrap around to start of buffer?
if(n == samples) {
pCur = (int8*)m_pData;
n = 0;
}
float fCur = 0;
convert_sample(pCur, fCur, m_format.format);
if(fCur < pMin[n % channels]) {
pMin[n % channels] = fCur;
if(pAt)
pAt[n % channels] = n / channels;
}
}
// return current frame
return n / channels;
}
void AudioBuffer::findMax(float* pMax, uint32* pAt /*=0*/) const {
findMax(0, m_frames, pMax, pAt);
}
uint32 AudioBuffer::findMax(uint32 fromFrame, uint32 frameCount,
float* pMax, uint32* pAt /*=0*/) const {
size_t channels = m_format.channel_count;
size_t samples = m_frames * channels;
size_t bytesPerSample = m_format.format & 0x0f;
size_t firstSample = fromFrame * channels;
size_t remaining = frameCount * channels;
if(!m_pData)
return fromFrame;
int8* pCur = (int8*)m_pData + (firstSample * bytesPerSample);
uint32 n;
if(pAt) {
// reset pAt
for(n = 0; n < channels; n++)
pAt[n] = UINT32_MAX;
}
// find minimum for each channel
for(
n = firstSample;
remaining;
remaining--, n++, pCur += bytesPerSample) {
// wrap around to start of buffer?
if(n == samples) {
pCur = (int8*)m_pData;
n = 0;
}
float fCur = 0;
convert_sample(pCur, fCur, m_format.format);
if(fCur > pMax[n % channels]) {
pMax[n % channels] = fCur;
if(pAt)
pAt[n % channels] = n / channels;
}
}
// return current frame
return n / channels;
}
void AudioBuffer::findPeaks(float* pPeaks, uint32* pAt /*=0*/) const {
findPeaks(0, m_frames, pPeaks, pAt);
}
uint32 AudioBuffer::findPeaks(uint32 fromFrame, uint32 frameCount,
float* pPeaks, uint32* pAt) const {
size_t channels = m_format.channel_count;
size_t samples = m_frames * channels;
size_t bytesPerSample = m_format.format & 0x0f;
size_t firstSample = fromFrame * channels;
size_t remaining = frameCount * channels;
if(!m_pData)
return fromFrame;
int8* pCur = (int8*)m_pData + (firstSample * bytesPerSample);
uint32 n;
if(pAt) {
// reset pAt
for(n = 0; n < channels; n++)
pAt[n] = UINT32_MAX;
}
// find peaks in both directions
for(
n = firstSample;
remaining;
remaining--, n++, pCur += bytesPerSample) {
// wrap around to start of buffer?
if(n == samples) {
pCur = (int8*)m_pData;
n = 0;
}
float fCur = 0;
convert_sample(pCur, fCur, m_format.format);
if(fabs(fCur) > pPeaks[n % channels]) {
pPeaks[n % channels] = fCur;
if(pAt)
pAt[n % channels] = n / channels;
}
}
// return current frame
return n / channels;
}
// find average level
// (converted/scaled as necessary)
// pAverage must point to an array with enough room
// for one value per channel.
void AudioBuffer::average(float* pAverage) const {
average(0, m_frames, pAverage);
}
uint32 AudioBuffer::average(uint32 fromFrame, uint32 frameCount,
float* pAverage) const {
size_t channels = m_format.channel_count;
size_t samples = m_frames * channels;
size_t bytesPerSample = m_format.format & 0x0f;
size_t firstSample = fromFrame * channels;
size_t remaining = frameCount * channels;
if(!m_pData)
return fromFrame;
int8* pCur = (int8*)m_pData + (firstSample * bytesPerSample);
// clear averages
memset(pAverage, 0, sizeof(float)*channels);
// calculate
uint32 n;
for(
n = firstSample;
remaining;
remaining--, n++, pCur += bytesPerSample) {
// wrap around to start of buffer
if(n == samples) {
pCur = (int8*)m_pData;
n = 0;
}
float fCur = 0;
convert_sample(pCur, fCur, m_format.format);
pAverage[n%channels] += fCur;
}
for(uint32 n = 0; n < channels; n++)
pAverage[n] /= frameCount;
// return current frame
return n / channels;
}
// -------------------------------------------------------- //
// END -- AudioBuffer.h --
↑ V730 Not all members of a class are initialized inside the constructor. Consider inspecting: m_format.